Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Res Sq ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37790313

ABSTRACT

Background: Stroke is a major cause of morbidity and mortality, and its incidence increases with age. While acute therapies for stroke are currently limited to intravenous thrombolytics and endovascular thrombectomy, recent studies have implicated an important role for the gut microbiome in post-stroke neuroinflammation. After stroke, several immuno-regulatory pathways, including the aryl hydrocarbon receptor (AHR) pathway, become activated. AHR is a master regulatory pathway that mediates neuroinflammation. Among various cell types, microglia (MG), as the resident immune cells of the brain, play a vital role in regulating post-stroke neuroinflammation and antigen presentation. Activation of AHR is dependent on a dynamic balance between host-derived and microbiota-derived ligands. While previous studies have shown that activation of MG AHR by host-derived ligands, such as kynurenine, is detrimental after stroke, the effects of post-stroke changes in microbiota-derived ligands of AHR, such as indoles, is unknown. Our study builds on the concept that differential activation of MG AHR by host-derived versus microbiome-derived metabolites affects outcomes after ischemic stroke. We examined the link between stroke-induced dysbiosis and loss of essential microbiota-derived AHR ligands. We hypothesize that restoring the balance between host-derived (kynurenine) and microbiota-derived (indoles) ligands of AHR is beneficial after stroke, offering a new potential avenue for therapeutic intervention in post-stroke neuroinflammation. Method: We performed immunohistochemical analysis of brain samples from stroke patients to assess MG AHR expression after stroke. We used metabolomics analysis of plasma samples from stroke and non-stroke control patients with matched comorbidities to determine the levels of indole-based AHR ligands after stroke. We performed transient middle cerebral artery occlusion (MCAO) in aged (18 months) wild-type (WT) and germ-free (GF) mice to investigate the effects of post-stroke treatment with microbiota-derived indoles on outcome. To generate our results, we employed a range of methodologies, including flow cytometry, metabolomics, and 16S microbiome sequencing. Results: We found that MG AHR expression is increased in human brain after stroke and after ex vivo oxygen-glucose deprivation and reperfusion (OGD/R). Microbiota-derived ligands of AHR are decreased in the human plasma at 24 hours after ischemic stroke. Kynurenine and indoles exhibited differential effects on aged WT MG survival after ex vivoOGD/R. We found that specific indole-based ligands of AHR (indole-3-propionic acid and indole-3-aldehyde) were absent in GF mice, thus their production depends on the presence of a functional gut microbiota. Additionally, a time-dependent decrease in the concentration of these indole-based AHR ligands occurred in the brain within the first 24 hours after stroke in aged WT mice. Post-stroke treatment of GF mice with a cocktail of microbiota-derived indole-based ligands of AHR regulated MG-mediated neuroinflammation and molecules involved in antigen presentation (increased CD80, MHC-II, and CD11b). Post-stroke treatment of aged WT mice with microbiota-derived indole-based ligands of AHR reduced both infarct volume and neurological deficits at 24 hours. Conclusion: Our novel findings provide compelling evidence that the restoration of a well-balanced pool of host-derived kynurenine-based and microbiota-derived indole-based ligands of AHR holds considerable therapeutic potential for the treatment of ischemic stroke.

2.
Aging Cell ; 22(11): e13977, 2023 11.
Article in English | MEDLINE | ID: mdl-37675802

ABSTRACT

Iron imbalance in the brain negatively affects brain function. With aging, iron levels increase in the brain and contribute to brain damage and neurological disorders. Changes in the cerebral vasculature with aging may enhance iron entry into the brain parenchyma, leading to iron overload and its deleterious consequences. Endothelial senescence has emerged as an important contributor to age-related changes in the cerebral vasculature. Evidence indicates that iron overload may induce senescence in cultured cell lines. Importantly, cells derived from female human and mice generally show enhanced senescence-associated phenotype, compared with males. Thus, we hypothesize that cerebral endothelial cells (CEC) derived from aged female mice are more susceptible to iron-induced senescence, compared with CEC from aged males. We found that aged female mice, but not males, showed cognitive deficits when chronically treated with ferric citrate (FC), and their brains and the brain vasculature showed senescence-associated phenotype. We also found that primary culture of CEC derived from aged female mice, but not male-derived CEC, exhibited senescence-associated phenotype when treated with FC. We identified that the transmembrane receptor Robo4 was downregulated in the brain vasculature and in cultured primary CEC derived from aged female mice, compared with those from male mice. We discovered that Robo4 downregulation contributed to enhanced vulnerability to FC-induced senescence. Thus, our study identifies Robo4 downregulation as a driver of senescence induced by iron overload in primary culture of CEC and a potential risk factor of brain vasculature impairment and brain dysfunction.


Subject(s)
Cellular Senescence , Iron Overload , Mice , Humans , Animals , Male , Female , Aged , Cellular Senescence/physiology , Endothelial Cells , Aging , Iron , Receptors, Cell Surface
3.
J Alzheimers Dis Rep ; 7(1): 381-398, 2023.
Article in English | MEDLINE | ID: mdl-37220617

ABSTRACT

Alzheimer's disease (AD) and stroke are two interrelated neurodegenerative disorders which are the leading cause of death and affect the neurons in the brain and central nervous system. Although amyloid-ß aggregation, tau hyperphosphorylation, and inflammation are the hallmarks of AD, the exact cause and origin of AD are still undefined. Recent enormous fundamental discoveries suggest that the amyloid hypothesis of AD has not been proven and anti-amyloid therapies that remove amyloid deposition have not yet slowed cognitive decline. However, stroke, mainly ischemic stroke (IS), is caused by an interruption in the cerebral blood flow. Significant features of both disorders are the disruption of neuronal circuitry at different levels of cellular signaling, leading to the death of neurons and glial cells in the brain. Therefore, it is necessary to find out the common molecular mechanisms of these two diseases to understand their etiological connections. Here, we summarized the most common signaling cascades including autotoxicity, ApoE4, insulin signaling, inflammation, mTOR-autophagy, notch signaling, and microbiota-gut-brain axis, present in both AD and IS. These targeted signaling pathways reveal a better understanding of AD and IS and could provide a distinguished platform to develop improved therapeutics for these diseases.

4.
Front Aging ; 2: 797562, 2021.
Article in English | MEDLINE | ID: mdl-35822045

ABSTRACT

Senescence in the cerebral endothelium has been proposed as a mechanism that can drive dysfunction of the cerebral vasculature, which precedes vascular dementia. Cysteine-rich angiogenic inducer 61 (Cyr61/CCN1) is a matricellular protein secreted by cerebral endothelial cells (CEC). CCN1 induces senescence in fibroblasts. However, whether CCN1 contributes to senescence in CEC and how this is regulated requires further study. Aging has been associated with the formation of four-stranded Guanine-quadruplexes (G4s) in G-rich motifs of DNA and RNA. Stabilization of the G4 structures regulates transcription and translation either by upregulation or downregulation depending on the gene target. Previously, we showed that aged mice treated with a G4-stabilizing compound had enhanced senescence-associated (SA) phenotypes in their brains, and these mice exhibited enhanced cognitive deficits. A sequence in the 3'-UTR of the human CCN1 mRNA has the ability to fold into G4s in vitro. We hypothesize that G4 stabilization regulates CCN1 in cultured primary CEC and induces endothelial senescence. We used cerebral microvessel fractions and cultured primary CEC from young (4-months old, m/o) and aged (18-m/o) mice to determine CCN1 levels. SA phenotypes were determined by high-resolution fluorescence microscopy in cultured primary CEC, and we used Thioflavin T to recognize RNA-G4s for fluorescence spectra. We found that cultured CEC from aged mice exhibited enhanced levels of SA phenotypes, and higher levels of CCN1 and G4 stabilization. In cultured CEC, CCN1 induced SA phenotypes, such as SA ß-galactosidase activity, and double-strand DNA damage. Furthermore, CCN1 levels were upregulated by a G4 ligand, and a G-rich motif in the 3'-UTR of the Ccn1 mRNA was folded into a G4. In conclusion, we demonstrate that CCN1 can induce senescence in cultured primary CEC, and we provide evidence that G4 stabilization is a novel mechanism regulating the SASP component CCN1.

5.
Aging (Albany NY) ; 12(9): 8049-8066, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32365331

ABSTRACT

Growth differentiation factor (GDF) 11 levels decline with aging. The age-related loss of GDF 11 has been implicated in the pathogenesis of a variety of age-related diseases. GDF11 supplementation reversed cardiac hypertrophy, bone loss, and pulmonary dysfunction in old mice, suggesting that GDF11 has a rejuvenating effect. Less is known about the potential of GDF11 to improve recovery after an acute injury, such as stroke, in aged mice. GDF11/8 levels were assessed in young and aged male mice and in postmortem human brain samples. Aged mice were subjected to a transient middle cerebral artery occlusion (MCAo). Five days after MCAo, mice received and bromodeoxyuridine / 5-Bromo-2'-deoxyuridine (BrdU) and either recombinant GDF11 or vehicle for five days and were assessed for recovery for one month following stroke. MRI was used to determine cerebrospinal fluid (CSF) volume, corpus callosum (CC) area, and brain atrophy at 30 days post-stroke. Immunohistochemistry was used to assess gliosis, neurogenesis, angiogenesis and synaptic density. Lower GDF11/8 levels were found with age in both mice and humans (p<0.05). GDF11 supplementation reduced mortality and improved sensorimotor deficits after stroke. Treatment also reduced brain atrophy and gliosis, increased angiogenesis, improved white matter integrity, and reduced inflammation after stroke. GDF11 may have a role in brain repair after ischemic injury.


Subject(s)
Aging , Bone Morphogenetic Proteins/pharmacokinetics , Brain/metabolism , Growth Differentiation Factors/pharmacokinetics , Ischemic Stroke/drug therapy , Recovery of Function/drug effects , Animals , Blotting, Western , Brain/drug effects , Dietary Supplements , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Ischemic Stroke/diagnosis , Ischemic Stroke/mortality , Male , Mice
6.
Sci Rep ; 10(1): 7737, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32385412

ABSTRACT

We hypothesized that early-life gut microbiota support the functional organization of neural circuitry in the brain via regulation of synaptic gene expression and modulation of microglial functionality. Germ-free mice were colonized as neonates with either a simplified human infant microbiota consortium consisting of four Bifidobacterium species, or with a complex, conventional murine microbiota. We examined the cerebellum, cortex, and hippocampus of both groups of colonized mice in addition to germ-free control mice. At postnatal day 4 (P4), conventionalized mice and Bifidobacterium-colonized mice exhibited decreased expression of synapse-promoting genes and increased markers indicative of reactive microglia in the cerebellum, cortex and hippocampus relative to germ-free mice. By P20, both conventional and Bifidobacterium-treated mice exhibited normal synaptic density and neuronal activity as measured by density of VGLUT2+ puncta and Purkinje cell firing rate respectively, in contrast to the increased synaptic density and decreased firing rate observed in germ-free mice. The conclusions from this study further reveal how bifidobacteria participate in establishing functional neural circuits. Collectively, these data indicate that neonatal microbial colonization of the gut elicits concomitant effects on the host CNS, which promote the homeostatic developmental balance of neural connections during the postnatal time period.


Subject(s)
Bifidobacterium/physiology , Microglia/cytology , Nerve Net/cytology , Nerve Net/growth & development , Synapses/metabolism , Animals , Animals, Newborn , Gene Expression Regulation, Developmental , Intestines/microbiology , Mice
7.
J Neuroinflammation ; 17(1): 160, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32429999

ABSTRACT

BACKGROUND: Risk of stroke-related morbidity and mortality increases significantly with age. Aging is associated with chronic, low-grade inflammation, which is thought to contribute to the poorer outcomes after stroke seen in the elderly. Histamine (HA) is a major molecular mediator of inflammation, and mast cells residing in the gut are a primary source of histamine. METHODS: Stroke was induced in male C57BL/6 J mice at 3 months (young) and 20 months (aged) of age. Role of histamine after stroke was examined using young (Yg) and aged (Ag) mice; mice underwent MCAO surgery and were euthanized at 6 h, 24 h, and 7 days post-ischemia; sham mice received the same surgery but no MCAO. In this work, we evaluated whether worsened outcomes after experimental stroke in aged mice were associated with age-related changes in mast cells, histamine levels, and histamine receptor expression in the gut, brain, and plasma. RESULTS: We found increased numbers of mast cells in the gut and the brain with aging. Using the middle cerebral artery occlusion (MCAO) model of ischemic stroke, we demonstrate that stroke leads to increased numbers of gut mast cells and gut histamine receptor expression levels. These gut-centric changes are associated with elevated levels of HA and other pro-inflammatory cytokines including IL-6, G-CSF, TNF-α, and IFN-γ in the peripheral circulation. Our data also shows that post-stroke gut inflammation led to a significant reduction of mucin-producing goblet cells and a loss of gut barrier integrity. Lastly, gut inflammation after stroke is associated with changes in the composition of the gut microbiota as early as 24-h post-stroke. CONCLUSION: An important theme emerging from our results is that acute inflammatory events following ischemic insults in the brain persist longer in the aged mice when compared to younger animals. Taken together, our findings implicate mast cell activation and histamine signaling as a part of peripheral inflammatory response after ischemic stroke, which are profound in aged animals. Interfering with histamine signaling orally might provide translational value to improve stroke outcome.


Subject(s)
Aging/pathology , Histamine/metabolism , Inflammation/pathology , Intestines/immunology , Mast Cells/pathology , Stroke/pathology , Aging/immunology , Animals , Gastrointestinal Microbiome , Histamine/immunology , Inflammation/immunology , Intestines/microbiology , Male , Mast Cells/immunology , Mice , Mice, Inbred C57BL , Stroke/immunology
8.
J Neuroinflammation ; 16(1): 40, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30777093

ABSTRACT

BACKGROUND: Ischemic stroke results in a robust inflammatory response within the central nervous system. As the immune-inhibitory CD200-CD200 receptor 1 (CD200R1) signaling axis is a known regulator of immune homeostasis, we hypothesized that it may play a role in post-stroke immune suppression after stroke. METHODS: In this study, we investigated the role of CD200R1-mediated signaling in stroke using CD200 receptor 1-deficient mice. Mice were subjected to a 60-min middle cerebral artery occlusion and evaluated at days 3 and 7, representing the respective peak and early resolution stages of neuroinflammation in this model of ischemic stroke. Infarct size and behavioral deficits were assessed at both time points. Central and peripheral cellular immune responses were measured using flow cytometry. Bacterial colonization was determined in lung tissue homogenates both after acute stroke and in an LPS model of systemic inflammation. RESULTS: In wild-type (WT) animals, CD200R1 was expressed on infiltrating monocytes and lymphocytes after stroke but was absent on microglia. Early after ischemia (72 h), CD200R1-knockout (KO) mice had significantly poorer survival rates and an enhanced susceptibility to spontaneous bacterial colonization of the respiratory tract compared to wild-type (WT) controls, despite no difference in infarct or neurological deficits. While the CNS inflammation was resolved by day 7 post-stroke in WT mice, brain-resident microglia and monocyte activation persisted in CD200R1-KO mice, accompanied by a delayed, augmented lymphocyte response. At this time point, CD200R1-KO mice displayed greater weight loss, more severe neurological deficits, and impaired motor function compared to WT. Systemically, CD200R1-KO mice exhibited signs of persistent infection including lymphopenia, T cell activation and memory conversion, and narrowing of the TCR repertoire. These findings were confirmed in a second model of acute neuroinflammation induced by systemic endotoxin challenge. CONCLUSION: This study defines an essential role of CD200-CD200R1 signaling in stroke. Loss of CD200R1 led to high mortality, increased rates of post-stroke infection, and enhanced entry of peripheral leukocytes into the brain after ischemia, with no increase in infarct size. This suggests that the loss of CD200 receptor leads to enhanced peripheral inflammation that is triggered by brain injury.


Subject(s)
Antigens, CD/metabolism , Bacterial Infections/etiology , Encephalitis/etiology , Infarction, Middle Cerebral Artery/physiopathology , Orexin Receptors/metabolism , Recovery of Function/physiology , Signal Transduction/physiology , Animals , Brain/metabolism , Cytokines/metabolism , Disease Models, Animal , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Illness Behavior/drug effects , Illness Behavior/physiology , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/physiology , Nesting Behavior/physiology , Orexin Receptors/genetics , Phagocytosis/physiology , Psychomotor Disorders/etiology , Recovery of Function/drug effects , Signal Transduction/drug effects
9.
Curr Pathobiol Rep ; 6(1): 47-54, 2018 Mar.
Article in English | MEDLINE | ID: mdl-30294506

ABSTRACT

Microbial metabolites influence the function of epithelial, endothelial and immune cells in the intestinal mucosa. Microbial metabolites like SCFAs and B complex vitamins direct macrophage polarization whereas microbial derived biogenic amines modulate intestinal epithelium and immune response. Aberrant bacterial lipopolysaccharide-mediated signaling may be involved in the pathogenesis of chronic intestinal inflammation and colorectal carcinogenesis. Our perception of human microbes has changed from that of opportunistic pathogens to active participants maintaining intestinal and whole body homeostasis. This review attempts to explain the dynamic and enriched interactions between the intestinal epithelial mucosa and commensal bacteria in homeostasis maintenance.

10.
Ann Neurol ; 84(1): 23-36, 2018 07.
Article in English | MEDLINE | ID: mdl-29733457

ABSTRACT

OBJECTIVE: Chronic systemic inflammation contributes to the pathogenesis of many age-related diseases. Although not well understood, alterations in the gut microbiota, or dysbiosis, may be responsible for age-related inflammation. METHODS: Using stroke as a disease model, we tested the hypothesis that a youthful microbiota, when established in aged mice, produces positive outcomes following ischemic stroke. Conversely, an aged microbiota, when established in young mice, produces negative outcomes after stroke. Young and aged male mice had either a young or an aged microbiota established by fecal transplant gavage (FTG). Mice were subjected to ischemic stroke (middle cerebral artery occlusion; MCAO) or sham surgery. During the subsequent weeks, mice underwent behavioral testing and fecal samples were collected for 16S ribosomal RNA analysis of bacterial content. RESULTS: We found that the microbiota is altered after experimental stroke in young mice and resembles the biome of uninjured aged mice. In aged mice, the ratio of Firmicutes to Bacteroidetes (F:B), two main bacterial phyla in gut microbiota, increased ∼9-fold (p < 0.001) compared to young. This increased F:B ratio in aged mice is indicative of dysbiosis. Altering the microbiota in young by fecal gavage to resemble that of aged mice (∼6-fold increase in F:B ratio, p < 0.001) increased mortality following MCAO, decreased performance in behavioral testing, and increased cytokine levels. Conversely, altering the microbiota in aged to resemble that of young (∼9-fold decrease in F:B ratio, p < 0.001) increased survival and improved recovery following MCAO. INTERPRETATION: Aged biome increased the levels of systemic proinflammatory cytokines. We conclude that the gut microbiota can be modified to positively impact outcomes from age-related diseases. Ann Neurol 2018;83:23-36.


Subject(s)
Aging , Gastrointestinal Microbiome , Inflammation/microbiology , Stroke/microbiology , Age Factors , Animals , Cytokines/metabolism , Disease Models, Animal , Exploratory Behavior , Fecal Microbiota Transplantation/methods , Inflammation/physiopathology , Mice , Mice, Inbred C57BL , Muscle Strength/physiology , Neurologic Examination , RNA, Ribosomal, 16S/metabolism , Stroke/physiopathology
11.
Am J Pathol ; 187(10): 2323-2336, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28917668

ABSTRACT

Microbiome-mediated suppression of carcinogenesis may open new avenues for identification of therapeutic targets and prevention strategies in oncology. Histidine decarboxylase (HDC) deficiency has been shown to promote inflammation-associated colorectal cancer by accumulation of CD11b+Gr-1+ immature myeloid cells, indicating a potential antitumorigenic effect of histamine. Here, we demonstrate that administration of hdc+Lactobacillus reuteri in the gut resulted in luminal hdc gene expression and histamine production in the intestines of Hdc-/- mice. This histamine-producing probiotic decreased the number and size of colon tumors and colonic uptake of [18F]-fluorodeoxyglucose by positron emission tomography in Hdc-/- mice. Administration of L. reuteri suppressed keratinocyte chemoattractant (KC), Il22, Il6, Tnf, and IL1α gene expression in the colonic mucosa and reduced the amounts of proinflammatory, cancer-associated cytokines, keratinocyte chemoattractant, IL-22, and IL-6, in plasma. Histamine-generating L. reuteri also decreased the relative numbers of splenic CD11b+Gr-1+ immature myeloid cells. Furthermore, an isogenic HDC-deficient L. reuteri mutant that was unable to generate histamine did not suppress carcinogenesis, indicating a significant role of the cometabolite, histamine, in suppression of chronic intestinal inflammation and colorectal tumorigenesis. These findings link luminal conversion of amino acids to biogenic amines by gut microbes and probiotic-mediated suppression of colorectal neoplasia.


Subject(s)
Carcinogenesis/pathology , Colorectal Neoplasms/pathology , Gastrointestinal Microbiome , Histamine/biosynthesis , Inflammation/pathology , Animals , Carcinogenesis/genetics , Colorectal Neoplasms/blood , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/genetics , Cytokines/blood , Gene Expression Regulation, Neoplastic , Histidine Decarboxylase/genetics , Histidine Decarboxylase/metabolism , Humans , Inflammation/blood , Inflammation/genetics , Intestinal Mucosa/pathology , Limosilactobacillus reuteri/metabolism , Mice, Inbred BALB C , Models, Biological , Myeloid Cells/metabolism , Positron-Emission Tomography , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Histamine H2/genetics , Receptors, Histamine H2/metabolism , Spleen/pathology , Survival Analysis
12.
Front Pharmacol ; 6: 269, 2015.
Article in English | MEDLINE | ID: mdl-26617521

ABSTRACT

Beneficial microbes are responsible for the synthesis of nutrients and metabolites that are likely important for the maintenance of mammalian health. Many nutrients and metabolites derived from the gut microbiota by luminal conversion have been implicated in the development, homeostasis and function of innate and adaptive immunity. These factors clearly suggest that intestinal microbiota may influence host immunity via microbial metabolite-dependent mechanisms. We describe how intestinal microbes including probiotics generate microbial metabolites that modulate mucosal and systemic immunity.

13.
PLoS One ; 8(9): e74963, 2013.
Article in English | MEDLINE | ID: mdl-24040367

ABSTRACT

Excessive mucin degradation by intestinal bacteria may contribute to inflammatory bowel diseases because access of luminal antigens to the intestinal immune system is facilitated. This study investigated how the presence of a mucin degrading commensal bacterium affects the severity of an intestinal Salmonella enterica Typhimurium-induced gut inflammation. Using a gnotobiotic C3H mouse model with a background microbiota of eight bacterial species (SIHUMI) the impact of the mucin-degrading commensal bacterium Akkermansia muciniphila (SIHUMI-A) on inflammatory and infectious symptoms caused by S. Typhimurium was investigated. Presence of A. muciniphila in S. Typhimurium-infected SIHUMI mice caused significantly increased histopathology scores and elevated mRNA levels of IFN-γ, IP-10, TNF-α, IL-12, IL-17 and IL-6 in cecal and colonic tissue. The increase in pro-inflammatory cytokines was accompanied by 10-fold higher S. Typhimurium cell numbers in mesenteric lymph nodes of SIHUMI mice associated with A. muciniphila and S. Typhimurium (SIHUMI-AS) compared to SIHUMI mice with S. Typhimurium only (SIHUMI-S). The number of mucin filled goblet cells was 2- to 3-fold lower in cecal tissue of SIHUMI-AS mice compared to SIHUMI-S, SIHUMI-A or SIHUMI mice. Reduced goblet cell numbers significantly correlated with increased IFN-γ mRNA levels (r(2) = -0.86, ***P<0.001) in all infected mice. In addition, loss of cecal mucin sulphation was observed in SIHUMI mice containing both A. muciniphila and S. Typhimurium compared to other mouse groups. Concomitant presence of A. muciniphila and S. Typhimurium resulted in a drastic change in microbiota composition of SIHUMI mice: the proportion of B. thetaiotaomicron in SIHUMI-AS mice was 0.02% of total bacteria compared to 78%-88% in the other mouse groups and the proportion of S. Typhimurium was 94% in SIHUMI-AS mice but only 2.2% in the SIHUMI-S mice. These results indicate that A. muciniphila exacerbates S. Typhimurium-induced intestinal inflammation by its ability to disturb host mucus homeostasis.


Subject(s)
Inflammation/microbiology , Intestines/microbiology , Salmonella Infections/microbiology , Symbiosis , Verrucomicrobia/physiology , Animals , Chemokine CXCL10/metabolism , Germ-Free Life , Interferon-gamma/metabolism , Interleukin-1/metabolism , Interleukin-12/metabolism , Interleukin-6/metabolism , Lymph Nodes/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C3H , Mucin-2/metabolism , RNA, Messenger/metabolism , Salmonella Infections/complications , Salmonella typhimurium/pathogenicity , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...