Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Clin Pharmacol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831713

ABSTRACT

Diabetic nephropathy (DN), a severe complication of type 2 diabetes mellitus (T2DM), is marked by heightened endoplasmic reticulum stress (ERS) and oxidative stress (OS) due to protein misfolding and free radical generation. We investigated the sodium-glucose co-transporter-2 inhibitor (SGLT2i), canagliflozin (Cana), in alleviating ERS and OS in DN patients and THP-1 cells under hyperglycemic condition. A total of 120 subjects were divided into four groups, with 30 subjects in each group: healthy controls, T2DM individuals, DN patients receiving standard treatment, and those treated with Cana. The control group had no history of diabetes, cardiovascular or renal diseases, or other comorbidities. Cana was administered at doses of either 100 or 300 mg per day based on the estimated glomerular filtration rate (eGFR) value of DN individuals, with a mean follow-up of 6 months. Additionally, THP-1 monocytes were exposed to HGM (33.3 mM glucose with a cytokine cocktail of TNF-α and IFN-γ at 50 ng/mL each) to evaluate the relative levels of ERS, OS markers, and nuclear factor erythroid 2-related factor 2 (Nrf2), the transcription factor regulating cellular redox, which is downregulated in diabetes. Our results revealed that ERS markers GRP78 and PERK, as well as OS markers TXNIP and p22phox, were elevated in both DN patients and HGM-treated THP-1 monocytes and were reduced by Cana intervention. Furthermore, Cana regulated the phosphorylation of Nrf2, Akt, and EIF2α in HGM-treated monocytes. In conclusion, our findings highlight the role of Cana in activating Nrf2, thereby attenuating ERS and OS to mitigate DN progression.

2.
Mol Immunol ; 164: 17-27, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37926050

ABSTRACT

Pterostilbene (PTS), known for its diverse beneficial effects via Nuclear factor erythroid-2 related factor (Nrf2) activation, holds potential for Diabetic Foot Ulcer (DFU) treatment. However, PTS-mediated Nrf2 regulation in diabetic wounds has yet to be elucidated. We used IC21 macrophage-conditioned media to simulate complex events that can influence the fibroblast phenotype using L929 cells during the wound healing process under a hyperglycemic microenvironment. We found that PTS attenuated fibroblast migration and alpha-smooth muscle actin (α-SMA) levels and hypoxia-inducible factor- 1 alpha (HIF1α). Furthermore, we demonstrated that wounds in diabetic mice characterized by impaired wound closure in a heightened inflammatory milieu, such as the NOD-like receptor P3 (NLRP3) and intercellular adhesion molecule 1 (ICAM1), and deficient Nrf2 response accompanying lowered Akt signaling and heme oxygenase1 (HO1) expression along with the impaired macrophage M2 marker CD206 expression, was rescued by administration of PTS. Such an elicited response was also compared favorably with the standard treatment using Regranex, a commercially available topical formulation for treating DFUs. Our findings suggest that PTS regulates Nrf2 in diabetic wounds, triggering a pro-wound healing response mediated by macrophages. This insight holds the potential for developing targeted therapies to heal chronic wounds, including DFUs.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Foot , NF-E2-Related Factor 2 , Stilbenes , Wound Healing , Animals , Mice , Diabetes Mellitus, Experimental/complications , Macrophages/metabolism , NF-E2-Related Factor 2/metabolism , Signal Transduction , Wound Healing/drug effects , Stilbenes/pharmacology , Stilbenes/therapeutic use , Diabetic Foot/drug therapy
3.
Inflammopharmacology ; 31(4): 2133-2145, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36662400

ABSTRACT

Macrophages exhibit a high degree of plasticity that is physiologically relevant in wound healing, and disruption in normal macrophage response leads to delayed wound closure resulting in chronic wounds. Here, we attempt to discern macrophage responses to hemin via regulation of the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) that could help us better understand the pathophysiology of diabetic foot ulcers (DFU). We demonstrate the alleviation of hemin-mediated Nrf2 suppression and M2 macrophage polarization by pterostilbene (PTS), a proven Nrf2 activator. IC-21 macrophages were treated with hemin under the normoglycemic or hyperglycemic environment with or without PTS and the expression levels of various markers, such as Nrf2 and its downstream target Heme Oxygenase-1 (HO-1), CD206, Ferroportin-1 among others were analyzed using qPCR and Western blot. Our results revealed that hemin under hyperglycemia reduced Nrf2 activation and its downstream targets, M2 polarization, and the induction of a proinflammatory cellular environment, and interestingly all of these were remedied by PTS treatment. Gelatin zymography of matrix metalloproteinase2 (MMP2) expression revealed that hemin under hyperglycemic condition significantly elevated MMP2 expression, which was reversed by PTS treatment. Further proteomic analysis using liquid chromatography with tandem mass spectrometry (LC-MS/MS) revealed a heightened cellular stress profile accompanying inflammation that was suppressed by PTS. This study has furthered our understanding on the role of Nrf2 in attenuating hemin-induced perturbations in macrophage responses and suggests a potential therapeutic target in the management of DFU.


Subject(s)
Hemin , Macrophages , NF-E2-Related Factor 2 , Stilbenes , Hemin/adverse effects , Macrophages/drug effects , Macrophages/metabolism , Cell Polarity , Hyperglycemia , NF-E2-Related Factor 2/metabolism , Diabetic Foot , Stilbenes/pharmacology , Animals , Mice , Cell Line
4.
Eur J Pharmacol ; 935: 175328, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36257383

ABSTRACT

The loss of function or dysfunction of ß-cells in the pancreas, attributed to the development of diabetes, involve alterations in genetic and epigenetic signatures. Recent evidences highlight the pathophysiological role of histone deacetylases (HDACs) in type 1 and type 2 diabetes. Indeed, most HDAC members have been linked to critical pathogenic events in diabetes, including redox imbalance, endoplasmic reticulum (ER) homeostasis perturbation, onset of oxidative stress and inflammation, which ultimately deteriorate ß-cell function. Accumulating evidence highlights the inhibition of HDACs as a prospective therapeutic strategy. Several chemically synthesized small molecules have been investigated for their specific ability to inhibit HDACs (reffered as HDAC inibitors) in various experimental studies. This review provides insights into the critical pathways involved in regulating different classes of HDACs. Further, the intricate signaling networks between HDACs and the stress mediators in diabetes are also explored. We exhaustively sum up the inferences from various investigations on the efficiency of HDAC inhibitors in managing diabetes and its associated complications.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylase Inhibitors/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Histone Deacetylases/metabolism , Insulin-Secreting Cells/metabolism
5.
Biofactors ; 48(4): 795-812, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35618963

ABSTRACT

The wide anatomical distribution of macrophages and their vast array of functions match various polarization states and their involvement in homeostasis and disease. The confluence of different cellular signaling networks, including direct involvement in inflammation, at the doorstep of the transcription factor Nuclear Factor- erythroid (NF-E2) p45-related factor 2 (Nrf2) activation raises the importance of deciphering the molecular circuitry at the background of multiple-discrete and antagonistic yet flexible and contextual pathways. While we primarily focus on wound healing and repair mechanisms that are affected in diabetic foot ulcers (DFUs), we strive to explore the striking similarities and differences in molecular events including inflammation, angiogenesis, and fibrosis during tissue injury and wound persistence that accumulates pro-inflammatory senescent macrophages, as a means to identify possible targets or cellular mediators to lessen DFU disease burden. In addition, the role of iron in the modulation of Nrf2 response in macrophages is crucial and reviewed here. Targeted approaches, unlike conventional treatments, in DFU management will require the review and re-assessment of mediators with relevance to other pathological conditions.


Subject(s)
Macrophages , NF-E2-Related Factor 2 , Humans , Inflammation/pathology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism
6.
Rev Med Virol ; 32(2): e2268, 2022 03.
Article in English | MEDLINE | ID: mdl-34176174

ABSTRACT

The recent outbreak and transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide and the ensuing coronavirus disease 2019 (COVID-19) pandemic has left us scrambling for ways to contain the disease and develop vaccines that are safe and effective. Equally important, understanding the impact of the virus on the host system in convalescent patients, healthy otherwise or with co-morbidities, is expected to aid in developing effective strategies in the management of patients afflicted with the disease. Viruses possess the uncanny ability to redirect host metabolism to serve their needs and also limit host immune response to ensure their survival. An ever-increasingly powerful approach uses metabolomics to uncover diverse molecular signatures that influence a wide array of host signalling networks in different viral infections. This would also help integrate experimental findings from individual studies to yield robust evidence. In addition, unravelling the molecular mechanisms harnessed by both viruses and tumours in their host metabolism will help broaden the repertoire of therapeutic tools available to combat viral disease.


Subject(s)
COVID-19 , Humans , Pandemics , SARS-CoV-2
7.
Pharmacol Res ; 173: 105853, 2021 11.
Article in English | MEDLINE | ID: mdl-34455076

ABSTRACT

Adipose tissue is instrumental in maintaining metabolic homeostasis by regulating energy storage in the form of triglycerides. In the case of over-nutrition, adipocytes favorably regulate lipogenesis over lipolysis and accumulate excess triglycerides, resulting in increased adipose tissue mass. An abnormal increase in hypertrophic adipocytes is associated with chronic complications such as insulin resistance, obesity, diabetes, atherosclerosis and nonalcoholic fatty liver disease. Experimental studies indicate the occurrence of oxidative stress in the pathogenesis of obesity. A common underlying link between increasing adipose tissue mass and oxidative stress is the Nuclear Factor Erythroid 2-related factor 2 (Nrf2), Keap1-Nrf2-ARE signaling, which plays an indispensable role in metabolic homeostasis by regulating oxidative and inflammatory responses. Additionally, Nrf2 also activates CCAAT/enhancer-binding protein α, (C/EBP-α), C/EBP-ß and peroxisome proliferator-activated receptor γ (PPARγ) the crucial pro-adipogenic factors that promote de novo adipogenesis. Hence, at the forefront of research is the quest for prospecting novel compounds to modulate Nrf2 activity in the context of adipogenesis and obesity. This review summarizes the molecular mechanism behind the activation of the Keap1-Nrf2-ARE signaling network and the role of Nrf2 activators in adipocyte pathophysiology.


Subject(s)
Adipocytes/metabolism , NF-E2-Related Factor 2/metabolism , Adipogenesis , Adipose Tissue/metabolism , Animals , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Obesity/metabolism , Reactive Oxygen Species/metabolism
8.
Exp Gerontol ; 152: 111479, 2021 09.
Article in English | MEDLINE | ID: mdl-34256115

ABSTRACT

In the present study, we characterized the aberration in Nrf2 signaling in macrophages under a hyperglycemic microenvironment that reflects diabetic wounds in vitro and studied the effect of an Nrf2 activator pterostilbene (PTS) in these experimental conditions. Macrophages were exposed to pro-inflammatory cytokines TNFα and IFNγ with (HG+) or without high glucose (NG+) followed by the treatment with or without PTS. Western blotting was undertaken to assess the Nrf2 translocation from cytosol to nucleus followed by its downstream and upstream mediators, heme oxygenase-1 and Akt, respectively, the latter via phosphorylation. Quantitative PCR was also carried out to check the expression of macrophage mannose receptor CD206. We found a 2-fold reduction in the activation of Nrf2 in the HG+ group at 24 h compared to NG+, which was significantly improved by the treatment with PTS. Reduction in the levels of heme oxygenase-1 and phosphorylation of Akt in the HG+ group was also ameliorated by PTS. Furthermore, the gene expression of CD206 that was significantly reduced in the HG+ group was also restored by PTS treatment. The disruption of Nrf2 signaling in macrophages in a hyperglycemic microenvironment in vitro may indeed reflect diabetic wounds, as opposed to other non-diabetic wounds.


Subject(s)
Diabetes Mellitus , NF-E2-Related Factor 2 , Heme Oxygenase-1/genetics , Humans , Macrophages/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction
9.
Cell Stress Chaperones ; 26(2): 311-321, 2021 03.
Article in English | MEDLINE | ID: mdl-33161510

ABSTRACT

Increasing evidence in substantiating the roles of endoplasmic reticulum stress, oxidative stress, and inflammatory responses and their interplay is evident in various diseases. However, an in-depth mechanistic understanding of the crosstalk between the intracellular stress signaling pathways and inflammatory responses and their participation in disease progression has not yet been explored. Progress has been made in our understanding of the cross talk and integrated stress signaling network between endoplasmic reticulum stress and oxidative stress towards the pathogenesis of diabetic nephropathy. In this present study, we studied the crosstalk between the endoplasmic reticulum stress and oxidative stress by understanding the role of protein disulfide isomerase and endoplasmic reticulum oxidase 1α, a key player in redox protein folding in the endoplasmic reticulum. We had recruited a total of 90 subjects and divided into three groups (control (n = 30), type 2 diabetes mellitus (n = 30), and diabetic nephropathy (n = 30)). We found that endoplasmic reticulum stress markers, activating transcription factor 6, inositol-requiring enzyme 1α, protein kinase RNA-like endoplasmic reticulum kinase, C/EBP homologous protein, and glucose-regulated protein-78; oxidative stress markers, thioredoxin-interacting protein and cytochrome b-245 light chain; and the crosstalk markers, protein disulfide isomerase and endoplasmic reticulum oxidase-1α, were progressively elevated in type 2 diabetes mellitus and diabetic nephropathy subjects. The association between the crosstalk markers showed a positive correlation with endoplasmic reticulum stress and oxidative stress markers. Further, the interplay between endoplasmic reticulum stress and oxidative stress was investigated in vitro using a human leukemic monocytic cell line under a hyperglycemic environment and examined the expression of protein disulfide isomerase and endoplasmic reticulum oxidase-1α. DCFH-DA assay and flow cytometry were performed to detect the production of free radicals. Further, phosphorylation of eIF2α in high glucose-exposed cells was studied using western blot. In conclusion, our results shed light on the crosstalk between endoplasmic reticulum stress and oxidative stress and significantly contribute to the onset and progression of diabetic nephropathy and therefore represent the major therapeutic targets for alleviating micro- and macrovascular complications associated with this metabolic disturbance. Graphical abstract.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Diabetic Nephropathies/metabolism , Endoplasmic Reticulum Stress , Membrane Glycoproteins/metabolism , Oxidative Stress , Oxidoreductases/metabolism , Adult , Biomarkers/metabolism , Female , Humans , Male , Middle Aged , Protein Disulfide-Isomerases/metabolism , THP-1 Cells
10.
Inflamm Res ; 69(4): 347-363, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32146517

ABSTRACT

PURPOSE: The failure in timely healing of wounds is a central feature in chronic wounds that leads to physiological, psychological and economic burdens. Macrophages have been demonstrated to have various functions in wounds including host defense, the promotion and resolution of inflammation, the removal of apoptotic cells and tissue restoration following injury. Accumulated evidence suggests that macrophage dysfunction is a component of the pathogenesis of non-healing wounds. While the overall signaling cascades have been well understood, their complex interplay and a detailed characterization of events that are disrupted in chronic wounds have still not emerged satisfactorily. METHODS: The existing literature was reviewed to summarize the regulation of macrophage polarization in wound closure and dysregulation in non-healing wounds. Further, the review also underscored the role of Nrf2 in promoting macrophage-mediated regulation in wound responses and in particular, macrophage involvement in iron homeostasis that is impaired in chronic wounds such as in diabetes. RESULTS: The mechanisms involved in the reprogramming of macrophage subtypes in chronic wounds are still emerging. Furthermore, treating non-healing wounds has increasingly been shifting focus from generic treatments to the development of targeted therapies. Increasing evidence suggests the need for modeling wound tissue in vitro which may very well serve a critical aspect to characterize the relevant factors that sustain chronic wounds in vivo such as the constant iron overload at the wound site from recurrent infection and bleeding. CONCLUSION: The development of targeted therapies and also developing a reliable means to monitor assisted healing of chronic wounds are two major goals to be pursued. In addition, identifying molecular targets that can regulate macrophages to aid tissue restoration in chronic wounds would serve the crucial step in realizing both aforementioned goals.


Subject(s)
Diabetes Mellitus/immunology , Macrophages/immunology , Wound Healing/immunology , Animals , Humans , Inflammation/immunology , Iron Overload/immunology , NF-E2-Related Factor 2/immunology
11.
J Biol Chem ; 289(1): 237-50, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24257755

ABSTRACT

During infection and tissue damage, virulence factors and alarmins are pro-inflammatory and induce activation of various immune cells including macrophages and mast cells (MCs). Activated MCs instantly release preformed inflammatory mediators, including several proteases. The chymase mouse mast cell protease (MCPT)-4 is thought to be pro-inflammatory, whereas human chymase also degrades pro-inflammatory cytokines, suggesting that chymase instead limits inflammation. Here we explored the contribution of MCPT4 and human chymase to the control of danger-induced inflammation. We found that protein extracts from wild type (WT), carboxypeptidase A3-, and MCPT6-deficient mice and MCs and recombinant human chymase efficiently degrade the Trichinella spiralis virulence factor heat shock protein 70 (Hsp70) as well as endogenous Hsp70. MC-(W(sash))-, serglycin-, NDST2-, and MCPT4-deficient extracts lacked this capacity, indicating that chymase is responsible for the degradation. Chymase, but not MC tryptase, also degraded other alarmins, i.e. biglycan, HMGB1, and IL-33, a degradation that was efficiently blocked by the chymase inhibitor chymostatin. IL-7, IL-22, GM-CSF, and CCL2 were resistant to chymase degradation. MCPT4-deficient conditions ex vivo and in vivo showed no reduction in added Hsp70 and only minor reduction of IL-33. Peritoneal challenge with Hsp70 resulted in increased neutrophil recruitment and TNF-α levels in the MCPT4-deficient mice, whereas IL-6 and CCL2 levels were similar to the levels found in WT mice. The rapid and MC chymase-specific degradation of virulence factors and alarmins may depend on the presence of accessible extended recognition cleavage sites in target substrates and suggests a protective and regulatory role of MC chymase during danger-induced inflammation.


Subject(s)
Biglycan/metabolism , Chymases/metabolism , HMGB1 Protein/metabolism , HSP70 Heat-Shock Proteins/metabolism , Helminth Proteins/metabolism , Interleukins/metabolism , Mast Cells/metabolism , Proteolysis , Trichinella spiralis/metabolism , Animals , Biglycan/genetics , Chymases/genetics , HMGB1 Protein/genetics , HSP70 Heat-Shock Proteins/genetics , Helminth Proteins/genetics , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Interleukin-33 , Interleukins/genetics , Mast Cells/pathology , Mice , Mice, Knockout , Trichinella spiralis/genetics , Virulence Factors/genetics , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...