Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 16(9): e1008799, 2020 09.
Article in English | MEDLINE | ID: mdl-32898164

ABSTRACT

Professional antigen-presenting cells (APCs), like macrophages (Mϕs) and dendritic cells (DCs), are central players in the induction of natural and vaccine-induced immunity to malaria, yet very little is known about the interaction of SPZ with human APCs. Intradermal delivery of whole-sporozoite vaccines reduces their effectivity, possibly due to dermal immunoregulatory effects. Therefore, understanding these interactions could prove pivotal to malaria vaccination. We investigated human APC responses to recombinant circumsporozoite protein (recCSP), SPZ and anti-CSP opsonized SPZ both in monocyte derived MoDCs and MoMϕs. Both MoDCs and MoMϕs readily took up recCSP but did not change phenotype or function upon doing so. SPZ are preferentially phagocytosed by MoMϕs instead of DCs and phagocytosis greatly increased after opsonization. Subsequently MoMϕs show increased surface marker expression of activation markers as well as tolerogenic markers such as Programmed Death-Ligand 1 (PD-L1). Additionally they show reduced motility, produce interleukin 10 and suppressed interferon gamma (IFNγ) production by antigen specific CD8+ T cells. Importantly, we investigated phenotypic responses to SPZ in primary dermal APCs isolated from human skin explants, which respond similarly to their monocyte-derived counterparts. These findings are a first step in enhancing our understanding of pre-erythrocytic natural immunity and the pitfalls of intradermal vaccination-induced immunity.


Subject(s)
Antigen-Presenting Cells/immunology , Macrophages/immunology , Malaria/immunology , Plasmodium berghei/immunology , Protozoan Proteins/immunology , Skin/immunology , Sporozoites/immunology , Animals , Cells, Cultured , Female , Humans , Macrophages/parasitology , Malaria/parasitology , Mice , Skin/parasitology
2.
Sci Rep ; 9(1): 13436, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31530862

ABSTRACT

Given the number of global malaria cases and deaths, the need for a vaccine against Plasmodium falciparum (Pf) remains pressing. Administration of live, radiation-attenuated Pf sporozoites can fully protect malaria-naïve individuals. Despite the fact that motility of these attenuated parasites is key to their infectivity and ultimately protective efficacy, sporozoite motility in human tissue (e.g. skin) remains wholly uncharacterized to date. We show that the ability to quantitatively address the complexity of sporozoite motility in human tissue provides an additional tool in the development of attenuated sporozoite vaccines. We imaged Pf movement in the skin of its natural host and compared wild-type and radiation-attenuated GFP-expressing Pf sporozoites. Using custom image analysis software and human skin explants we were able to quantitatively study their key motility features. This head-to-head comparison revealed that radiation attenuation impaired the capacity of sporozoites to vary their movement angle, velocity and direction, promoting less refined movement patterns. Understanding and overcoming these changes in motility will contribute to the development of an efficacious attenuated parasite malaria vaccine.


Subject(s)
Plasmodium falciparum/radiation effects , Skin/parasitology , Sporozoites/pathogenicity , Sporozoites/radiation effects , Animals , Anopheles/parasitology , Green Fluorescent Proteins/genetics , Host-Parasite Interactions , Humans , Image Processing, Computer-Assisted , Organisms, Genetically Modified , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity , Software
3.
J Infect Dis ; 220(6): 1044-1048, 2019 08 09.
Article in English | MEDLINE | ID: mdl-31077279

ABSTRACT

Four healthy volunteers were infected with 50 Necator americanus infective larvae (L3) in a controlled human hookworm infection trial and followed for 52 weeks. The kinetics of fecal egg counts in volunteers was assessed with Bayesian multilevel analysis, which revealed an increase between weeks 7 and 13, followed by an egg density plateau of about 1000 eggs/g of feces. Variation in egg counts was minimal between same-day measurements but varied considerably between days, particularly during the plateau phase. These analyses pave the way for the controlled human hookworm model to accelerate drug and vaccine efficacy studies.


Subject(s)
Larva/physiology , Models, Biological , Necator americanus/cytology , Necator americanus/physiology , Necatoriasis/physiopathology , Animals , Bayes Theorem , Blood Cell Count , Eosinophils , Feces/parasitology , Female , Follow-Up Studies , Healthy Volunteers , Humans , Kinetics , Male , Necatoriasis/parasitology , Young Adult
4.
Front Immunol ; 9: 2510, 2018.
Article in English | MEDLINE | ID: mdl-30429854

ABSTRACT

Following initial invasion of Schistosoma mansoni cercariae, schistosomula reside in the skin for several days during which they can interact with the dermal immune system. While murine experiments have indicated that exposure to radiation-attenuated (RA) cercariae can generate protective immunity which is initiated in the skin stage, contrasting non-attenuated cercariae, such data is missing for the human model. Since murine skin does not form a reliable marker for immune responses in human skin, we used human skin explants to study the interaction with non-attenuated and RA cercariae with dermal innate antigen presenting cells (APCs) and the subsequent immunological responses. We exposed human skin explants to cercariae and visualized their invasion in real time (initial 30 min) using novel imaging technologies. Subsequently, we studied dermal immune responses and found an enhanced production of regulatory cytokine interleukin (IL)-10, pro-inflammatory cytokine IL-6 and macrophage inflammatory protein (MIP)-1α within 3 days of exposure. Analysis of dermal dendritic cells (DDCs) for their phenotype revealed an increased expression of immune modulators programmed death ligand (PD-L) 1 and 2, and increased IL-10 production. Ex vivo primed DDCs suppress Th1 polarization of naïve T-cells and increase T-cell IL-10 production, indicating their regulatory potential. These immune responses were absent or decreased after exposure to RA parasites. Using transwells, we show that direct contact between APCs and cercariae is required to induce their regulatory phenotype. To the best of our knowledge this is the first study that attempts to provide insight in the human dermal S. mansoni cercariae invasion and subsequent immune responses comparing non-attenuated with RA parasites. We reveal that cercariae induce a predominantly regulatory immune response whereas RA cercariae fail to achieve this. This initial understanding of the dermal immune suppressive capacity of S. mansoni cercariae in humans provides a first step toward the development of an effective schistosome vaccine.


Subject(s)
Antigen-Presenting Cells/immunology , Cercaria/immunology , Schistosoma mansoni/immunology , Schistosomiasis mansoni/immunology , Skin/immunology , Animals , Apoptosis Regulatory Proteins/immunology , Cell Line , Coculture Techniques/methods , Humans , Interleukin-10/immunology , Interleukin-6/immunology , Macrophage Inflammatory Proteins/immunology
5.
Neurol Neuroimmunol Neuroinflamm ; 3(4): e239, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27218119

ABSTRACT

OBJECTIVES: To identify the epitope on α-synuclein (α-syn) to which antibodies against the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) bind and to determine whether antibodies targeting this mimicry domain are present in human sera. METHODS: Reactivity of the α-syn-cross-reacting anti-LMP1 monoclonal antibody CS1-4 to a synthetic peptide containing the putative mimicry domain was compared to those in which this domain was mutated and to murine and rat α-syn (which differ from human α-syn at this site) in Western blots. Using ELISA, sera from EBV+ (n = 4) and EBV- (n = 12) donors as well as those with infectious mononucleosis (IM; n = 120), and Hodgkin disease (HD; n = 33) were interrogated for antibody reactivity to synthetic peptides corresponding to regions of α-syn and LMP1 containing the mimicry domain. RESULTS: CS1-4 showed strong reactivity to wild-type human α-syn, but not to the mutant peptides or rodent α-syn. Control EBV- and EBV+ sera showed no reactivity to α-syn or LMP1 peptides. However, a significant proportion of IM and HD sera contained immunoglobulin M (IgM) (59% and 70%, in IM and HD, respectively), immunoglobulin G (IgG) (40% and 48%), and immunoglobulin A (IgA) (28% and 36%) antibodies to both peptides, as well as a significant correlation in the titers of IgM (ρ = 0.606 and 0.664, for IM and HD, respectively), IgG (0.526 and 0.836), and IgA (0.569 and 0.728) antibodies targeting LMP1 and α-syn peptides. CONCLUSIONS: Anti-EBV-LMP1 antibodies cross-reacting with a defined epitope in α-syn are present in human patients. These findings may have implications for the pathogenesis of synucleinopathies.

SELECTION OF CITATIONS
SEARCH DETAIL
...