Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(8): 10795-10804, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38377544

ABSTRACT

Metal-organic frameworks (MOFs) have captured the imagination of researchers for their highly tunable properties and many potential applications, including as catalysts for a variety of transformations. Even though MOFs possess significant potential, the challenges associated with processing of these crystalline powders into usable form factors while retaining their functional properties limit their end use applications. Herein, we introduce a new approach to construct MOF-polymer composites via 3D photoprinting to overcome these limitations. We designed photoresin composite formulations that use polymerization-induced phase separation to cause the MOF catalysts to migrate to the surface of the printed material, where they are accessible to substrates such as chemical warfare agents. Using our approach, MOF-polymer composites can be fabricated into nearly any shape or architecture while retaining both the excellent catalytic activity at 10 wt % loading of the MOF components and the flexible, elastomeric mechanical properties of a polymer.

2.
Crit Rev Food Sci Nutr ; 56(9): 1417-27, 2016 Jul 03.
Article in English | MEDLINE | ID: mdl-26147443

ABSTRACT

This paper focuses on the critical aspects of supplementation of foods with essential fatty acids (EFAs), the need, health benefits of supplementation and the constraints of the process. Current trend of supplementation of foods with EFAs has been gaining momentum and more research pioneers due to the health benefits in par with the direct intake of EFA supplements. Technologies including encapsulation, nanotechnology, molecular complexing, genetic engineering and more emerging means, hold promise to food supplementation with EFAs. Food trials with adoption of various technologies, studies of bioavailability and health benefits are still underway and crucial before EFA supplementation in foods can hit the market on a global scale.


Subject(s)
Fatty Acids, Essential/administration & dosage , Food , Diet , Dietary Supplements , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-6/administration & dosage , Fish Oils , Humans , Plants, Genetically Modified , Technology, Pharmaceutical
3.
J Food Sci ; 77(7): M391-6, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22757712

ABSTRACT

UNLABELLED: The prevalence of foodborne illnesses is continually on rise. In the U.S.A., Escherichia coli O157:H7 (E. coli) has been associated with several outbreaks in minimally processed foods. Spinach and lettuce pose higher food safety risks and recurring food recalls suggest the insufficiency of current disinfection strategies. We aimed at offering a natural antimicrobial alternative using organic acids (malic, tartaric, and lactic acids [MA, TA, and LA, respectively]) and grape seed extract (GSE) and a novel application method using electrostatic spraying to evenly distribute the antimicrobials onto produce. Spinach and lettuce samples were washed, sanitized with sodium hypochlorite solution (6.25 mL/L), dip inoculated in water containing E. coli (7.0 log CFU/mL) for 24 h, and rewashed with sterile water to remove nonadhered pathogens. The samples were sprayed electrostatically with MA, LA, and GSE alone and in combinations and for comparison, with phosphoric acid (PA) and pH controls with deionized water adjusted to 1.5/2.3/3.6 and stored at 4 °C. When combined with LA (3%), MA (3%) showed 2.1 to 4.0 log CFU/g reduction of E. coli between the days 1 and 14 on spinach and 1.1 to 2.5 log CFU/g reduction on lettuce. Treatment with PA (1.5%) and PA (1.5%)-GSE (2%) exhibited 1.1 to 2.1 log CFU/g inhibition of E. coli on spinach during the 14-d storage. Our findings demonstrated the efficacy of electrostatic spraying of MA, LA, and GSE on fresh produce to improve the safety and lower the public health burden linked to produce contamination. PRACTICAL APPLICATION: Electrostatic spraying is an emerging technique that can be adopted to improve the distribution and application of antimicrobials during fresh produce sanitation. Relatively simple and quick, the process can access most/all parts of produce surface and offer protection from food pathogens. The use of malic and lactic acids with or without grape seed extract can serve as effective antimicrobials when sprayed electrostatically, lowering the risk from postcontamination issues with spinach and iceberg lettuce. This application technology can be extended to improve the commercial food safety of other produce, fruits, poultry, and meat.


Subject(s)
Decontamination/methods , Escherichia coli O157/drug effects , Food Handling/methods , Lactuca/microbiology , Plant Extracts/pharmacology , Spinacia oleracea/microbiology , Anti-Infective Agents/pharmacology , Colony Count, Microbial , Consumer Product Safety , Disinfectants/pharmacology , Escherichia coli O157/growth & development , Food Contamination/prevention & control , Food Microbiology , Grape Seed Extract/pharmacology , Lactic Acid/pharmacology , Malates/pharmacology , Sodium Hypochlorite/pharmacology
4.
Biochim Biophys Acta ; 1824(10): 1107-17, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22732351

ABSTRACT

Nutriproteomics is a nascent research arena, exploiting the dynamics of proteomic tools to characterize molecular and cellular changes in protein expression and function on a global level as well as judging the interaction of proteins with food nutrients. As nutrients are present in complex mixtures, the bioavailability and functions of each nutrient can be influenced by the presence of other nutrients/compounds and interactions. The first half of this review focuses on the techniques used as nutriproteomic tools for identification, quantification, characterization and analyses of proteins including, two-dimensional polyacrylamide electrophoresis, chromatography, mass spectrometry, microarray and other emerging technologies involving visual proteomics. The second half narrates the potential of nutriproteomics in medical and nutritional research for revolutionizing biomarker and drug development, nutraceutical discovery, biological process modeling, preclinical nutrition linking diet and diseases and structuring ways to a personalized nutrition. Though several challenges such as protein dynamics, analytical complexity, cost and resolution still exist, the scope of applying proteomics to nutrition is rapidly expanding and promising as more holistic strategies are emerging.


Subject(s)
Diet , Disease , Nutrition Assessment , Proteomics , Humans , Mass Spectrometry , Proteins/chemistry , Proteins/isolation & purification
5.
J Food Sci ; 75(9): M574-9, 2010.
Article in English | MEDLINE | ID: mdl-21535613

ABSTRACT

About 40000 people fall victim to Salmonella infections every year in the United States. Recent occurrences of Salmonella contaminated spinach and its recalls have accelerated the need for efficient antimicrobials targeting these pathogens. Our study was aimed at evaluating the inhibitory properties of malic, tartaric, and lactic acids, and grape seed extract (GSE) alone and in combinations and their application methods against Salmonella Typhimurium-inoculated spinach using a response surface method. Fresh spinach leaves were washed, disinfected with sodium hypochlorite solution (0.04% v/v), rewashed with sterile deionized (DI) water, and inoculated with a 2nd-day culture of S. Typhimurium (7.0 log CFU/mL). Adhered S. Typhimurium population on day 0 were 7.5 log CFU/g. These were treated with individual and combinations of organic acids with GSE or DI water (control) adjusted to the same pH as that of the test solutions with both the modes of application and leaves were refrigerated at 4 °C. Malic acid (2%) in combination with GSE (3%) or lactic acid (3%) sprayed electrostatically showed reductions of 2.6 to 3.3 log CFU/g compared to lower log reductions (0.0 to 0.3 log CFU/g) by day 14 if sprayed conventionally. These findings indicate that malic acid in combination with GSE/lactic acid solutions applied by electrostatic spraying exhibited higher inhibition of pathogens than conventional spraying and can be used for commercial applications to enhance food safety.


Subject(s)
Decontamination/methods , Grape Seed Extract/pharmacology , Lactic Acid/pharmacology , Malates/pharmacology , Salmonella typhimurium/growth & development , Tartrates/pharmacology , Adhesins, Bacterial/metabolism , Anti-Infective Agents/pharmacology , Bacterial Load , Consumer Product Safety , Food Contamination/analysis , Food Contamination/prevention & control , Food Handling , Food Preservation/methods , Phosphoric Acids/pharmacology , Salmonella typhimurium/pathogenicity , Sodium Hypochlorite/pharmacology , Spinacia oleracea/microbiology , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL