Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(6): 060403, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37625043

ABSTRACT

We uncover a dynamical entanglement transition in a monitored quantum system that is heralded by a local order parameter. Classically, chaotic systems can be stochastically controlled onto unstable periodic orbits and exhibit controlled and uncontrolled phases as a function of the rate at which the control is applied. We show that such control transitions persist in open quantum systems where control is implemented with local measurements and unitary feedback. Starting from a simple classical model with a known control transition, we define a quantum model that exhibits a diffusive transition between a chaotic volume-law entangled phase and a disentangled controlled phase. Unlike other entanglement transitions in monitored quantum circuits, this transition can also be probed by correlation functions without resolving individual quantum trajectories.

2.
Phys Rev Lett ; 126(4): 040603, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33576679

ABSTRACT

Using synthetic lattices of laser-coupled atomic momentum modes, we experimentally realize a recently proposed family of nearest-neighbor tight-binding models having quasiperiodic site energy modulation that host an exact mobility edge protected by a duality symmetry. These one-dimensional tight-binding models can be viewed as a generalization of the well-known Aubry-André model, with an energy-dependent self-duality condition that constitutes an analytical mobility edge relation. By adiabatically preparing low and high energy eigenstates of this model system and performing microscopic measurements of their participation ratio, we track the evolution of the mobility edge as the energy-dependent density of states is modified by the model's tuning parameter. Our results show strong deviations from single-particle predictions, consistent with attractive interactions causing both enhanced localization of the lowest energy state due to self-trapping and inhibited localization of high energy states due to screening. This study paves the way for quantitative studies of interaction effects on self-duality induced mobility edges.

3.
Phys Rev Lett ; 118(8): 086801, 2017 Feb 24.
Article in English | MEDLINE | ID: mdl-28282154

ABSTRACT

It was proposed recently that the out-of-time-ordered four-point correlator (OTOC) may serve as a useful characteristic of quantum-chaotic behavior, because, in the semiclassical limit ℏ→0, its rate of exponential growth resembles the classical Lyapunov exponent. Here, we calculate the four-point correlator C(t) for the classical and quantum kicked rotor-a textbook driven chaotic system-and compare its growth rate at initial times with the standard definition of the classical Lyapunov exponent. Using both quantum and classical arguments, we show that the OTOC's growth rate and the Lyapunov exponent are, in general, distinct quantities, corresponding to the logarithm of the phase-space averaged divergence rate of classical trajectories and to the phase-space average of the logarithm, respectively. The difference appears to be more pronounced in the regime of low kicking strength K, where no classical chaos exists globally. In this case, the Lyapunov exponent quickly decreases as K→0, while the OTOC's growth rate may decrease much slower, showing a higher sensitivity to small chaotic islands in the phase space. We also show that the quantum correlator as a function of time exhibits a clear singularity at the Ehrenfest time t_{E}: transitioning from a time-independent value of t^{-1}lnC(t) at tt_{E}. We note that the underlying physics here is the same as in the theory of weak (dynamical) localization [Aleiner and Larkin, Phys. Rev. B 54, 14423 (1996)PRBMDO0163-182910.1103/PhysRevB.54.14423; Tian, Kamenev, and Larkin, Phys. Rev. Lett. 93, 124101 (2004)PRLTAO0031-900710.1103/PhysRevLett.93.124101] and is due to a delay in the onset of quantum interference effects, which occur sharply at a time of the order of the Ehrenfest time.

4.
Phys Rev B ; 952017.
Article in English | MEDLINE | ID: mdl-31276076

ABSTRACT

We investigate the topological degeneracy that can be realized in Abelian fractional quantum spin Hall states with multiply connected gapped boundaries. Such a topological degeneracy (also dubbed as "boundary degeneracy") does not require superconducting proximity effect and can be created by simply applying a depletion gate to the quantum spin Hall material and using a generic spin-mixing term (e.g., due to backscattering) to gap out the edge modes. We construct an exactly soluble microscopic model manifesting this topological degeneracy and solve it using the recently developed technique [S. Ganeshan and M. Levin, Phys. Rev. B 93, 075118 (2016)]. The corresponding string operators spanning this degeneracy are explicitly calculated. It is argued that the proposed scheme is experimentally reasonable.

5.
Phys Rev Lett ; 115(18): 186601, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26565483

ABSTRACT

We investigate many-body localization in the presence of a single-particle mobility edge. By considering an interacting deterministic model with an incommensurate potential in one dimension we find that the single-particle mobility edge in the noninteracting system leads to a many-body mobility edge in the corresponding interacting system for certain parameter regimes. Using exact diagonalization, we probe the mobility edge via energy resolved entanglement entropy (EE) and study the energy resolved applicability (or failure) of the eigenstate thermalization hypothesis (ETH). Our numerical results indicate that the transition separating area and volume law scaling of the EE does not coincide with the nonthermal to thermal transition. Consequently, there exists an extended nonergodic phase for an intermediate energy window where the many-body eigenstates violate the ETH while manifesting volume law EE scaling. We also establish that the model possesses an infinite temperature many-body localization transition despite the existence of a single-particle mobility edge. We propose a practical scheme to test our predictions in atomic optical lattice experiments which can directly probe the effects of the mobility edge.

6.
Phys Rev Lett ; 114(14): 146601, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25910146

ABSTRACT

We investigate localization properties in a family of deterministic (i.e., no disorder) nearest neighbor tight binding models with quasiperiodic on site modulation. We prove that this family is self-dual under a generalized duality transformation. The self-dual condition for this general model turns out to be a simple closed form function of the model parameters and energy. We introduce the typical density of states as an order parameter for localization in quasiperiodic systems. By direct calculations of the inverse participation ratio and the typical density of states we numerically verify that this self-dual line indeed defines a mobility edge in energy separating localized and extended states. Our model is a first example of a nearest neighbor tight binding model manifesting a mobility edge protected by a duality symmetry. We propose a realistic experimental scheme to realize our results in atomic optical lattices and photonic waveguides.

7.
Phys Rev Lett ; 111(13): 130405, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-24116753

ABSTRACT

Recent experiments have shown that Landau-Majorana-Stückelberg-Zener (LMSZ) interferometry is a powerful tool for demonstrating and exploiting quantum coherence not only in atomic systems but also in a variety of solid state quantum systems such as spins in quantum dots, superconducting qubits, and nitrogen vacancy centers in diamond. In this Letter, we propose and develop a general (and, in principle, exact) theoretical formalism to identify and characterize the interference resonances that are the hallmark of LMSZ interferometry. Unlike earlier approaches, our scheme does not require any approximations, allowing us to uncover important and previously unknown features of the resonance structure. We also discuss the experimental observability of our results.

8.
Phys Rev Lett ; 110(18): 180403, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23683181

ABSTRACT

The Aubry-André or Harper (AAH) model has been the subject of extensive theoretical research in the context of quantum localization. Recently, it was shown that one-dimensional quasicrystals described by the incommensurate AAH model has a nontrivial topology. In this Letter, we show that the commensurate off-diagonal AAH model is topologically nontrivial in the gapless regime and supports zero-energy edge modes. Unlike the incommensurate case, the nontrivial topology in the off-diagonal AAH model is attributed to the topological properties of the one-dimensional Majorana chain. We discuss the feasibility of experimental observability of our predicted topological phase in the commensurate AAH model.

9.
Phys Chem Chem Phys ; 13(8): 3375-84, 2011 Feb 28.
Article in English | MEDLINE | ID: mdl-21180721

ABSTRACT

The hydrogen bond interaction between water molecules adsorbed on a Pd <111> surface, a nucleator of two dimensional ordered water arrays at low temperatures, is studied using density functional theory calculations. The role of the exchange and correlation density functional in the characterization of both the hydrogen bond and the water-metal interaction is analyzed in detail. The effect of non local correlations using the van der Waals density functional proposed by Dion et al. [M. Dion, H. Rydberg, E. Schröder, D. C. Langreth and B. I. Lundqvist, Phys. Rev. Lett., 2004, 92, 246401] is also studied. We conclude that the choice of this potential is critical in determining the cohesive energy of water-metal complexes. We show that the interaction between water molecules and the metal surface is as sensitive to the density functional choice as hydrogen bonds between water molecules are. The reason for this is that the two interactions are very similar in nature. We make a detailed analogy between the water-water bond in the water dimer and the water-Pd bond at the Pd <111> surface. Our results show a strong similarity between these two interactions and based on this we describe the water-Pd bond as a hydrogen bond type interaction. These results demonstrate the need to obtain an accurate and reliable representation of the hydrogen bond interaction in density functional theory.

SELECTION OF CITATIONS
SEARCH DETAIL
...