Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 372(1): 317-33, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17097720

ABSTRACT

Nitrogen isotope ratios (delta(15)N) were used to help elucidate the sources and fate of ammonium (NH(4)(+)) and nitrate (NO(3)(-)) in two northeastern English estuaries. The dominant feature of NH(4)(+) in the heavily urbanised Tyne estuary was a plume arising from a single point source; a large sewage works. Although NH(4)(+) concentrations (ranging from 30-150 microM) near the sewage outfall varied considerably between surveys, the sewage-derived delta(15)N-NH(4)(+) signature was remarkably constant (+10.6+/-0.5 per thousand) and could be tracked across the estuary. As indirectly supported by (15)N-depleted delta(15)N-NO(3)(-) values observed close to the mouth of the Tyne, this sewage-derived NH(4)(+) was thought to initiate lower estuarine and coastal zone nitrification. In the more rural Tweed, NH(4)(+) concentrations were low (<7 microM) compared to those in the Tyne and delta(15)N-NH(4)(+) values were consistent with mixing between riverine and marine sources. The dominant form of dissolved inorganic nitrogen (DIN) in the Tweed was agricultural soil-derived NO(3)(-). A decrease in riverine NO(3)(-) flux during the summer coinciding with an increase in delta(15)N-NO(3)(-) values was mainly attributed to enhanced watershed nutrient processing. In the Tyne, where agricultural inputs are less important compared to the Tweed, light delta(15)N-NO(3)(-) (ca. 0 per thousand) detected in the estuary during one winter survey pointed to a larger contribution from precipitation-derived NO(3)(-) during high river discharge. Regardless of the dominant sources, in both estuaries most of the variability in DIN concentrations and delta(15)N values was explained by simple end-member mixing models, implying very little estuarine processing.


Subject(s)
Nitrogen/analysis , Water Pollutants, Chemical/analysis , Agriculture , Environmental Monitoring , Nitrates/analysis , Nitrogen Isotopes , North Sea , Quaternary Ammonium Compounds/analysis , Rivers , United Kingdom , Waste Disposal, Fluid
3.
Nature ; 415(6868): 156-9, 2002 Jan 10.
Article in English | MEDLINE | ID: mdl-11805830

ABSTRACT

To explain the lower atmospheric CO2 concentrations during glacial periods, it has been suggested that the productivity of marine phytoplankton was stimulated by an increased flux of iron-bearing dust to the oceans. One component of this theory is that iron-an essential element/nutrient for nitrogen-fixing organisms-will increase the rate of marine nitrogen fixation, fuelling the growth of other marine phytoplankton and increasing CO2 uptake. Here we present data that questions this hypothesis. From a sediment core off the northwestern continental margin of Mexico, we show that denitrification and phosphorite formation-processes that occur in oxygen-deficient upwelling regions, removing respectively nitrogen and phosphorus from the ocean-declined in glacial periods, thus increasing marine inventories of nitrogen and phosphorus. But increases in phosphorus were smaller and less rapid, leading to increased N/P ratios in the oceans. Acknowledging that phytoplankton require nitrogen and phosphorus in constant proportions, the Redfield ratio, and that N/P ratios greater than the Redfield ratio are likely to suppress nitrogen fixation, we suggest therefore that marine productivity did not increase in glacial periods in response to either increased nutrient inventories or greater iron supply.


Subject(s)
Nitrogen Fixation , Nitrogen/metabolism , Phosphorus/metabolism , Atmosphere , Carbon Dioxide/metabolism , Cold Climate , Geologic Sediments , Minerals/metabolism , Models, Biological , Oceans and Seas , Phosphates/metabolism , Phytoplankton/metabolism , Seawater , Time
SELECTION OF CITATIONS
SEARCH DETAIL
...