Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Breastfeed Med ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695182

ABSTRACT

Background and Objectives: As cannabis use increases among reproductive-aged women, there is a growing need to better understand the presence of cannabinoids in milk produced by women using cannabis. It is unclear how concentrations of cannabinoids such as delta-9-tetrahydrocannabinol (Δ9-THC) persist in milk after cannabis use and what factors contribute to variation in milk Δ9-THC concentrations. Our objectives were to measure cannabinoids in human milk following cannabis abstention, after single and repeated instances of cannabis use, and identify factors contributing to concentration variation. Methods: The Lactation and Cannabis (LAC) Study prospectively observed 20 breastfeeding participants who frequently used cannabis (≥1/week), had enrolled <6 months postpartum, were feeding their infant their milk ≥5 times/day, and were not using any illicit drugs. Participants collected a baseline milk sample after ≥12 hours of abstaining from cannabis and five milk samples at set intervals over 8-12 hours after initial cannabis use. Participants completed surveys and recorded self-directed cannabis use during the study period. Results: Δ9-THC peaked 120 minutes after a single instance of cannabis use (median, n = 9). More instances of cannabis use during the study period were associated with greater Δ9-THC area-under-the-curve concentrations (ρ = 0.65, p = 0.002), indicating Δ9-THC bioaccumulation in most participants. Baseline Δ9-THC logged concentration was positively associated with self-reported frequency of cannabis use (b = 0.57, p = 0.01). Conclusions: Cannabinoids are measurable in human milk following cannabis use, and concentrations remain elevated with repeated cannabis use over a day. Substantial variation in Δ9-THC milk concentrations reflects individual differences in characteristics and behavior, including average postpartum frequency of cannabis use.

2.
J Cannabis Res ; 6(1): 6, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365778

ABSTRACT

OBJECTIVE: Our primary objective was to understand breastfeeding individuals' decisions to use cannabis. Specifically, we investigated reasons for cannabis use, experiences with healthcare providers regarding use, and potential concerns about cannabis use. METHODS: We collected survey data from twenty breastfeeding participants from Washington and Oregon who used cannabis at least once weekly. We documented individuals' cannabis use and analyzed factors associated with their decisions to use cannabis during lactation. Qualitative description was used to assess responses to an open-ended question about potential concerns. RESULTS: Fifty-five percent of participants (n = 11) reported using cannabis to treat or manage health conditions, mostly related to mental health. Eighty percent of participants (n = 16) reported very few or no concerns about using cannabis while breastfeeding, although participants who used cannabis for medical purposes had significantly more concerns. Most participants (n = 18, 90%) reported receiving either no or unhelpful advice from healthcare providers. Four themes arose through qualitative analysis, indicating that breastfeeding individuals are: 1) identifying research gaps and collecting evidence; 2) monitoring their child's health and development; 3) monitoring and titrating their cannabis use; and 4) comparing risks between cannabis and other controlled substances. CONCLUSIONS: Breastfeeding individuals reported cannabis for medical and non-medical reasons and few had concerns about cannabis use during breastfeeding. Breastfeeding individuals reported using a variety of strategies and resources in their assessment of risk or lack thereof when deciding to use cannabis. Most participants reported receiving no helpful guidance from healthcare providers.

3.
Plants (Basel) ; 12(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38068670

ABSTRACT

Rootstock selection and crop load adjustment are key practices in apple orchard management; nevertheless, the effects of rootstocks and crop load levels on important physiological processes of the scions, such as photosynthetic performance and carbohydrate accumulation, are still unclear. To investigate the impact of different rootstocks and crop load levels on scion photosynthesis and carbohydrate buildup, in 2020, 'Honeycrisp' trees grafted on rootstocks 'G.41', 'G.935', and 'M.9-T337' were thinned to low and high crop load levels, and photosynthetic performance and carbohydrate accumulation in leaves and fruit were evaluated. Leaves from 'G.935' showed the highest net photosynthesis and electron use efficiency of photosynthesis and the lowest activity for non-net carboxylative processes, all together indicative of enhanced photosynthetic performance. High crop load determined an increase in gas exchange, suggesting a positive feedback of high fruit competition on carbon assimilation. While rootstock 'M.9-T337' showed a higher accumulation of starch in leaves, no pattern regarding the composition of leaf-soluble sugars among rootstocks could be identified. Conversely, by the end of the harvest season, leaves from low-cropping trees had higher fructose, glucose, and sorbitol than those from high-cropping trees, but differences in starch content were not significant. Fructose and sorbitol concentrations were affected by rootstock and crop load, respectively. Overall, this study showed that high cropping enhanced photosynthesis in 'Honeycrisp' apple and determined lower accumulation of some soluble carbohydrates (fructose, glucose, sorbitol) in leaves. This study also provided insights into how rootstocks affect photosynthetic performance of 'Honeycrisp', highlighting 'G.935' as the rootstock conferring the highest photosynthetic capacity under the present experimental conditions.

4.
Front Plant Sci ; 14: 1229620, 2023.
Article in English | MEDLINE | ID: mdl-37662178

ABSTRACT

The bacterial pathogen Candidatus Liberibacter asiaticus (CLas) is the causal agent of citrus greening disease. This unusual plant pathogenic bacterium also infects its psyllid host, the Asian citrus psyllid (ACP). To investigate gene expression profiles with a focus on genes involved in infection and circulation within the psyllid host of CLas, RNA-seq libraries were constructed from CLas-infected and CLas-free ACP representing the five different developmental stages, namely, nymphal instars 1-2, 3, and 4-5, and teneral and mature adults. The Gbp paired-end reads (296) representing the transcriptional landscape of ACP across all life stages and the official gene set (OGSv3) were annotated based on the chromosomal-length v3 reference genome and used for de novo transcript discovery resulting in 25,410 genes with 124,177 isoforms. Differential expression analysis across all ACP developmental stages revealed instar-specific responses to CLas infection, with greater overall responses by nymphal instars, compared to mature adults. More genes were over-or under-expressed in the 4-5th nymphal instars and young (teneral) adults than in instars 1-3, or mature adults, indicating that late immature instars and young maturing adults were highly responsive to CLas infection. Genes identified with potential for direct or indirect involvement in the ACP-CLas circulative, propagative transmission pathway were predominantly responsive during early invasion and infection processes and included canonical cytoskeletal remodeling and endo-exocytosis pathway genes. Genes with predicted functions in defense, development, and immunity exhibited the greatest responsiveness to CLas infection. These results shed new light on ACP-CLas interactions essential for pathogenesis of the psyllid host, some that share striking similarities with effector protein-animal host mechanisms reported for other culturable and/or fastidious bacterial- or viral- host pathosystems.

5.
Planta ; 257(1): 9, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36482224

ABSTRACT

MAIN CONCLUSION: Unlike the bicellular glands characteristic of all known excreting grasses, unique single-celled salt glands were discovered in the only salt tolerant species of the genus Oryza, Oryza coarctata. Salt tolerance has evolved frequently in a large number of grass lineages with distinct difference in mechanisms. Mechanisms of salt tolerance were studied in three species of grasses characterized by salt excretion: C3 wild rice species Oryza coarctata, and C4 species Sporobolus anglicus and Urochondra setulosa. The leaf anatomy and ultrastructure of salt glands, pattern of salt excretion, gas exchange, accumulation of key photosynthetic enzymes, leaf water content and osmolality, and levels of some osmolytes, were compared when grown without salt, with 200 mM NaCl versus 200 mM KCl. Under salt treatments, there was little effect on the capacity for CO2 assimilation, while stomatal conductance decreased with a reduction in water loss by transpiration and an increase in water use efficiency. All three species accumulate compatible solutes but with drastic differences in osmolyte composition. Having high capacity for salt excretion, they have distinct structural differences in the salt excreting machinery. S. anglicus and U. setulosa have bicellular glands while O. coarctata has unique single-celled salt glands with a partitioning membrane system that are responsible for salt excretion rather than multiple hairs as previously suggested. The features of physiological responses and salt excretion indicate similar mechanisms are involved in providing tolerance and excretion of Na+ and K+.


Subject(s)
Oryza , Salt Tolerance , Animals , Salt Gland , Water
6.
Hortic Res ; 9: uhac165, 2022.
Article in English | MEDLINE | ID: mdl-36204203

ABSTRACT

Diosgenin saponins isolated from Dioscorea species such as D. zingiberensis exhibit a broad spectrum of pharmacological activities. Diosgenin, the aglycone of diosgenin saponins, is an important starting material for the production of steroidal drugs. However, how plants produce diosgenin saponins and the origin and evolution of the diosgenin saponin biosynthetic pathway remain a mystery. Here we report a high-quality, 629-Mb genome of D. zingiberensis anchored on 10 chromosomes with 30 322 protein-coding genes. We reveal that diosgenin is synthesized in leaves ('source'), then converted into diosgenin saponins, and finally transported to rhizomes ('sink') for storage in plants. By evaluating the distribution and evolutionary patterns of diosgenin saponins in Dioscorea species, we find that diosgenin saponin-containing may be an ancestral trait in Dioscorea and is selectively retained. The results of comparative genomic analysis indicate that tandem duplication coupled with a whole-genome duplication event provided key evolutionary resources for the diosgenin saponin biosynthetic pathway in the D. zingiberensis genome. Furthermore, comparative transcriptome and metabolite analysis among 13 Dioscorea species suggests that specific gene expression patterns of pathway genes promote the differential evolution of the diosgenin saponin biosynthetic pathway in Dioscorea species. Our study provides important insights and valuable resources for further understanding the biosynthesis, evolution, and utilization of plant specialized metabolites such as diosgenin saponins.

7.
Microorganisms ; 10(10)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36296267

ABSTRACT

In Saudi Arabia (SA), the citrus greening disease is caused by 'Candidatus Liberibacter asiaticus' (CLas) transmitted by the Asian citrus psyllid (ACP) Diaphorina citri. The origin and route(s) of the ACP-CLas pathosystem invasion in SA have not been studied. Adult ACP were collected from citrus trees in SA and differentiated by analysis of the mitochondrial cytochrome oxidase I (mtCOI) and nuclear copper transporting protein (atox1) genes. A phylogenetic analysis of the Wolbachia spp. surface protein (wsp) gene was used to identify the ACP-associated Wolbachia spp. A phylogenetic analysis of the atox1 and mtCOI gene sequences revealed one predominant ACP haplotype most closely related to the Indian subcontinent founder populations. The detection and identification of CLas in citrus trees were carried out by polymerase chain reaction (PCR) amplification and sequencing of the 16S rDNA gene. The CLas-integrated prophage genomes were sequenced, annotated, and used to differentiate CLas populations. The ML and ASTRAL trees reconstructed with prophages type 1 and 2 genome sequences, separately and concatenated, resolved two major lineages, CLas-1 and -2. The CLas-1 clade, reported here for the first time, consisted of isolates from SA isolates and Pakistan. The CLas-2 sequences formed two groups, CLas-2-1 and -2-2, previously the 'Asiatic' and 'Floridian' strains, respectively. Members of CLas-2-1 originated from Southeast Asia, the USA, and other worldwide locations, while CLas-2-2 was identified only in Florida. This study provides the first snapshot into the status of the ACP-CLas pathosystem in SA. In addition, the results provide new insights into the pathosystem coevolution and global invasion histories of two ACP-CLas lineages with a predicted center of origin in South and Southeast Asia, respectively.

8.
Proc Natl Acad Sci U S A ; 119(36): e2207190119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037354

ABSTRACT

Mercaptoethane sulfonate or coenzyme M (CoM) is the smallest known organic cofactor and is most commonly associated with the methane-forming step in all methanogenic archaea but is also associated with the anaerobic oxidation of methane to CO2 in anaerobic methanotrophic archaea and the oxidation of short-chain alkanes in Syntrophoarchaeum species. It has also been found in a small number of bacteria capable of the metabolism of small organics. Although many of the steps for CoM biosynthesis in methanogenic archaea have been elucidated, a complete pathway for the biosynthesis of CoM in archaea or bacteria has not been reported. Here, we present the complete CoM biosynthesis pathway in bacteria, revealing distinct chemical steps relative to CoM biosynthesis in methanogenic archaea. The existence of different pathways represents a profound instance of convergent evolution. The five-step pathway involves the addition of sulfite, the elimination of phosphate, decarboxylation, thiolation, and the reduction to affect the sequential conversion of phosphoenolpyruvate to CoM. The salient features of the pathway demonstrate reactivities for members of large aspartase/fumarase and pyridoxal 5'-phosphate-dependent enzyme families.


Subject(s)
Bacteria , Coenzymes , Euryarchaeota , Mesna , Anaerobiosis , Archaea/metabolism , Bacteria/metabolism , Coenzymes/biosynthesis , Euryarchaeota/metabolism , Mesna/metabolism , Methane/metabolism , Oxidation-Reduction , Phosphates/metabolism
10.
Plants (Basel) ; 11(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35161442

ABSTRACT

Salicylic acid (SA) is a phytohormone that plays manifold roles in plant growth, defense, and other aspects of plant physiology. The concentration of free SA in plants is fine-tuned by a variety of structural modifications. SA is produced by all land plants, yet it is not known whether its metabolism is conserved in all lineages. Selaginella moellendorffii is a lycophyte and thus a representative of an ancient clade of vascular plants. Here, we evaluated the accumulation of SA and related metabolites in aerial parts of S. moellendorffii. We found that SA is primarily stored as the 2-O-ß-glucoside. Hydroxylated derivatives of SA are also produced by S. moellendorffii and stored as ß-glycosides. A candidate signal for SA aspartate was also detected. Phenylpropanoic acids also occur in S. moellendorffii tissue. Only o-coumaric acid is stored as the ß-glycoside, while caffeic, p-coumaric, and ferulic acids accumulate as alkali-labile conjugates. An in silico search for enzymes involved in conjugation and catabolism of SA in the S. moellendorffii genome indicated that experimental characterization is necessary to clarify the physiological functions of the putative orthologs. This study sheds light on SA metabolism in an ancestral plant species and suggests directions towards elucidating the underlying mechanisms.

11.
Front Plant Sci ; 13: 1031629, 2022.
Article in English | MEDLINE | ID: mdl-36891131

ABSTRACT

Potato (Solanum tuberosum L) is affected by several viral pathogens with the most economically damaging being potato virus Y (PVY). At least nine biologically distinct variants of PVY are known to attack potato, with necrotic types named PVYNTN and PVYN-Wi being the most recent additions to the list. So far, the molecular plant-virus interactions underlying this pathogenicity are not fully understood. In this study, gas chromatography coupled with mass spectroscopy (GC-MS) was used for an untargeted investigation of the changes in leaf metabolomes of PVY-resistant cultivar Premier Russet, and a susceptible cultivar, Russet Burbank, following inoculation with three PVY strains, PVYNTN, PVYN-Wi, and PVYO. Analysis of the resulting GC-MS spectra with the online software Metaboanalyst (version 5.0) uncovered several common and strain-specific metabolites that are induced by PVY inoculation. In Premier Russet, the major overlap in differential accumulation was found between PVYN-Wi and PVYO. However, the 14 significant pathways occurred solely due to PVYN-Wi. In contrast, the main overlap in differential metabolite profiles and pathways in Russet Burbank was between PVYNTN and PVYO. Overall, limited overlap was observed between PVYNTN and PVYN-Wi. As a result, PVYN-Wi-induced necrosis may be mechanistically distinguishable from that of PVYNTN. Furthermore, 10 common and seven cultivar-specific metabolites as potential indicators of PVY infection and susceptibility/resistance were identified by using PLS-DA and ANOVA. In Russet Burbank, glucose-6-phosphate and fructose-6-phosphate were particularly affected by strain-time interaction. This highlights the relevance of the regulation of carbohydrate metabolism for defense against PVY. Some strain- and cultivar-dependent metabolite changes were also observed, reflecting the known genetic resistance-susceptibility dichotomy between the two cultivars. Consequently, engineering broad-spectrum resistance may be the most effective breeding strategy for managing these necrotic strains of PVY.

12.
Phytopathology ; 111(12): 2343-2354, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34865506

ABSTRACT

Tilletia caries infection of wheat (Triticum aestivum) has become an increasing problem in organic wheat agriculture throughout the world. Little is known about how this pathogen alters host metabolism to ensure a successful infection. We investigated how T. caries allocates resources from wheat for its growth over the life cycle of the pathogen. An untargeted metabolomics approach that combined gas chromatography time-of-flight mass spectrometry and ultraperformance liquid chromatography tandem mass spectrometry platforms was used to determine which primary or specialized metabolite pathways are targeted and altered during T. caries infection. We found that T. caries does not dramatically alter the global metabolome of wheat but instead alters key metabolites for its own nutrient uptake and to antagonize host defenses by reducing wheat's sweet immunity response and other related pathways. Our results highlight metabolic characteristics needed for selecting wheat varieties that are resistant to T. caries infection for organic agriculture. In addition, several wheat metabolites were identified that could be used in developing a diagnostic tool for early detection of T. caries infection.


Subject(s)
Basidiomycota , Triticum , Metabolomics , Plant Diseases
13.
Metabolites ; 11(7)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34357358

ABSTRACT

Scrophularia lanceolata Pursh and Scrophularia marilandica L. are two common species within the Scrophulariaceae family that are endemic to North America. Historically, these species were used by indigenous peoples and colonialists to treat sunburn, sunstroke, frostbite, edema, as well as for blood purification, and in women's health. Several iridoid and phenylethanoid/phenylpropanoid glycosides detected in these species, such as harpagoside and verbascoside, possess anti-inflammatory and anti-nociceptive properties. Due to the presence of anti-inflammatory metabolites and the historical uses of these species, we performed a two-year field study to determine the optimal production of these important compounds. We subjected the plants to shade treatment and analyzed differences in the metabolite composition between the two species and each of their leaves, stems, and roots at various times throughout the growing seasons. We determined that S. lanceolata plants grown in full sun produced 0.63% harpagoside per dried weight in their leaves compared to shade-grown plants (0.43%). Furthermore, S. lanceolata accumulated more harpagoside than S. marilandica (0.24%). We also found that verbascoside accumulated in the leaves of S. lanceolata and S. marilandica as the growing season progressed, while the production of this metabolite remained mostly seasonally unchanged in the roots of both species.

14.
Front Microbiol ; 12: 651282, 2021.
Article in English | MEDLINE | ID: mdl-33936009

ABSTRACT

Plants live in association with microorganisms that positively influence plant development, vigor, and fitness in response to pathogens and abiotic stressors. The bulk of the plant microbiome is concentrated belowground at the plant root-soil interface. Plant roots secrete carbon-rich rhizodeposits containing primary and secondary low molecular weight metabolites, lysates, and mucilages. These exudates provide nutrients for soil microorganisms and modulate their affinity to host plants, but molecular details of this process are largely unresolved. We addressed this gap by focusing on the molecular dialog between eight well-characterized beneficial strains of the Pseudomonas fluorescens group and Brachypodium distachyon, a model for economically important food, feed, forage, and biomass crops of the grass family. We collected and analyzed root exudates of B. distachyon and demonstrated the presence of multiple carbohydrates, amino acids, organic acids, and phenolic compounds. The subsequent screening of bacteria by Biolog Phenotype MicroArrays revealed that many of these metabolites provide carbon and energy for the Pseudomonas strains. RNA-seq profiling of bacterial cultures amended with root exudates revealed changes in the expression of genes encoding numerous catabolic and anabolic enzymes, transporters, transcriptional regulators, stress response, and conserved hypothetical proteins. Almost half of the differentially expressed genes mapped to the variable part of the strains' pangenome, reflecting the importance of the variable gene content in the adaptation of P. fluorescens to the rhizosphere lifestyle. Our results collectively reveal the diversity of cellular pathways and physiological responses underlying the establishment of mutualistic interactions between these beneficial rhizobacteria and their plant hosts.

15.
Sci Rep ; 11(1): 1590, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33452410

ABSTRACT

A particular type of miniature ceramic vessel locally known as "veneneras" is occasionally found during archaeological excavations in the Maya Area. To date, only one study of a collection of such containers successfully identified organic residues through coupled chromatography-mass spectrometry methods. That study identified traces of nicotine likely associated with tobacco. Here we present a more complete picture by analyzing a suite of possible complementary ingredients in tobacco mixtures across a collection of 14 miniature vessels. The collection includes four different vessel forms and allows for the comparison of specimens which had previously formed part of museum exhibitions with recently excavated, untreated containers. Archaeological samples were compared with fresh as well as cured reference materials from two different species of tobacco (Nicotiana tabacum and N. rustica). In addition, we sampled six more plants which are linked to mind-altering practices through Mesoamerican ethnohistoric or ethnographic records. Analyses were conducted using UPLC-MS metabolomics-based analytical techniques, which significantly expand the possible detection of chemical compounds compared to previous biomarker-focused studies. Results include the detection of more than 9000 residual chemical features. We trace, for the first time, the presence of Mexican marigold (Tagetes lucida) in presumptive polydrug mixtures.


Subject(s)
Ceramics/analysis , Metabolomics/methods , Nicotiana/chemistry , Tobacco Use/history , Archaeology , Chromatography, High Pressure Liquid , History, Ancient , Humans , Mexico , Principal Component Analysis , Tandem Mass Spectrometry
16.
Enzyme Microb Technol ; 142: 109691, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33220870

ABSTRACT

'Candidatus Liberibacter asiaticus' ('Ca. L. asiaticus'), the suspected causative agent of citrus greening disease, is one of many phloem-restricted plant pathogens that have not been isolated and grown in an axenic culture. In this study, infected Asian citrus psyllids were used to prepare a host-free source of 'Ca. L. asiaticus'. Host-free mixed microbial cultures of 'Ca. L. asiaticus' were grown in the presence of various antibiotic treatments to alter the composition of the microbial communities. Our hypothesis was that the presence of selected antibiotics would enhance or reduce the presence of 'Ca. L. asiaticus' in a host-free culture composed of a mixed bacterial population through changes in the microbial community structure. We determined how 'Ca. L. asiaticus' growth changed with the various treatments. Treatment with vancomycin (50 µg/mL), streptomycin (0.02 µg/mL), or polymyxin B (4 µg/mL) was associated with an increased abundance of 'Ca. L. asiaticus' of 7.35 ±â€¯0.27, 5.56 ±â€¯0.15, or 4.54 ±â€¯0.83 fold, respectively, compared to untreated mixed microbial cultures, while treatment with 100 µg/mL vancomycin; 0.5, 1, or 2 µg/mL streptomycin; or 0.5 µg/mL of polymyxin B was associated with reduced growth. In addition, the growth of 'Ca. L. asiaticus' was associated with the microbial community composition of the mixed microbial cultures. A positive relationship between the presence of the Pseudomonadaceae family and 'Ca. L. asiaticus' growth was observed, while the presence of 'Ca. L. asiaticus' was below the detection limit in cultures that displayed high abundances of Bacillus cereus. Our findings offer strategies for developing effective axenic culture conditions and suggest that enrichment of the Bacillaceae family could serve as a paratransgenic approach to controlling citrus greening disease.


Subject(s)
Citrus , Microbiota , Rhizobiaceae , Liberibacter , Plant Diseases
17.
Article in English | MEDLINE | ID: mdl-33073178

ABSTRACT

Plants deploy a variety of chemical and physical defenses to protect themselves against herbivores and pathogens. Organic farming seeks to enhance these responses by improving soil quality, ultimately altering bottom up regulation of plant defenses. While laboratory studies suggest this approach is effective, it remains unclear whether organic agriculture encourages more-active plant defenses under real-world conditions. Working on the farms of cooperating growers, we examined gene expression in the leaves of two potato (Solanum tuberosum) varieties, grown on organic vs. conventional farms. For one variety, Norkotah, we found significantly heightened initiation of genes associated with plant-defense pathways in plants grown in organic vs. conventional fields. Organic Norkotah fields exhibited lower levels of nitrate in soil and of nitrogen in plant foliage, alongside differences in communities of soil bacteria, suggesting possible links between soil management and observed differences in plant defenses. Additionally, numbers of predatory and phloem-feeding insects were higher in organic than conventional fields. A second potato variety, Alturas, which is generally grown using fewer inputs and in poorer-quality soils, exhibited lower overall herbivore and predator numbers, few differences in soil ecology, and no differences in gene-activity in organic and conventional farming systems. Altogether, our results suggest that organic farming has the potential to increase plants' resistance to herbivores, possibly facilitating reduced need for insecticide applications. These benefits appear to be mediated by plant variety and/or farming context.

18.
Front Mol Biosci ; 7: 133, 2020.
Article in English | MEDLINE | ID: mdl-32671097

ABSTRACT

Residues from ancient artifacts can help identify which plant species were used for their psychoactive properties, providing important information regarding the deep-time co-evolutionary relationship between plants and humans. However, relying on the presence or absence of one or several biomarkers has limited the ability to confidently connect residues to particular plants. We describe a comprehensive metabolomics-based approach that can distinguish closely related species and provide greater confidence in species use determinations. An ~1430-year-old pipe from central Washington State not only contained nicotine, but also had strong evidence for the smoking of Nicotiana quadrivalvis and Rhus glabra, as opposed to several other species in this pre-contact pipe. Analysis of a post-contact pipe suggested use of different plants, including the introduced trade tobacco, Nicotiana rustica. Ancient residue metabolomics provides a new frontier in archaeo-chemistry, with greater precision to investigate the evolution of drug use and similar plant-human co-evolutionary dynamics.

19.
Front Mol Biosci ; 7: 23, 2020.
Article in English | MEDLINE | ID: mdl-32158766

ABSTRACT

Antibiotic resistance is a growing concern worldwide and consequently metabolomic tools are being applied increasingly in efforts aimed at identifying new antimicrobial compounds. Marine bacteria-derived compounds have shown great promise in this area. A metabolomics-based study was undertaken to study the diversity of secondary metabolites from marine sediment bacteria isolated from different locations of Hawai'i and Puerto Rico. This effort included characterizing the biodiversity in the sediment samples and searching for antibacterial activity and associated compounds. Bacterial strains were isolated using several different nutrient agars and culture conditions. DNA sequencing (16s rDNA) was used for phylogenetic characterization. Antibacterial activity was assessed against antibiotic-resistant strains of Escherichia coli, Salmonella enterica, Acinetobacter baumannii, Staphylococcus aureus, and Enterococcus faecalis. Ethyl acetate extracted bacterial secondary metabolites were measured by ultra-performance liquid chromatography-mass spectrometry, processed in Progenesis QI and further analyzed by partial least squares-discriminant analysis using MetaboAnalyst 3. Among the strains (n = 143) that were isolated from these two geographical areas and tested for antibiotic activity, 19 exhibited antibacterial activity against at least one antibiotic-resistant human pathogen. One strain from Hawai'i possessed broad-spectrum activity against all five pathogens. Metabolite profiles were diverse and separated the strains into two clusters in PCA analysis that mirrored geographical origin of the isolated strains. A diversity of bacteria and potential antibacterial compounds were observed in this study. Marine environments represent an opportunity to discover a rich diversity of antibacterial compounds for which resistance mechanisms may be uncommon in human pathogens.

20.
Microb Biotechnol ; 13(3): 747-759, 2020 05.
Article in English | MEDLINE | ID: mdl-31958876

ABSTRACT

'Candidatus Liberibacter asiaticus' is a fastidious bacterium and a putative agent of citrus greening disease (a.k.a., huanglongbing, HLB), a significant agricultural disease that affects citrus fruit quality and tree health. In citrus, 'Ca. L. asiaticus' is phloem limited. Lack of culture tools to study 'Ca. L. asiaticus' complicates analysis of this important organism. To improve understanding of 'Ca. L. asiaticus'-host interactions including parameters that affect 'Ca. L. asiaticus' replication, methods suitable for screening pathogen responses to physicochemical and nutritional variables are needed. We describe a leaf disc-based culture assay that allows highly selective measurement of changes in 'Ca. L. asiaticus' DNA within plant tissue incubated under specific physicochemical and nutritional conditions. qPCR analysis targeting the hypothetical gene CD16-00155 (strain A4) allowed selective quantification of 'Ca. L. asiaticus' DNA content within infected tissue. 'Ca. L. asiaticus' DNA replication was observed in response to glucose exclusively under microaerobic conditions, and the antibiotic amikacin further enhanced 'Ca. L. asiaticus' DNA replication. Metabolite profiling revealed a moderate impact of 'Ca. L. asiaticus' on the ability of leaf tissue to metabolize and respond to glucose.


Subject(s)
Citrus , DNA Replication , DNA, Bacterial , Food Microbiology , Host-Pathogen Interactions , Liberibacter , Plant Leaves , Citrus/microbiology , DNA, Bacterial/analysis , Food Microbiology/methods , Liberibacter/genetics , Plant Diseases/microbiology , Plant Leaves/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...