Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1301490, 2023.
Article in English | MEDLINE | ID: mdl-38164248

ABSTRACT

The maintenance of ion balance in closed hydroponic solutions is essential to improve the crop quality and recycling efficiency of nutrient solutions. However, the absence of robust ion sensors for key ions such as P and Mg and the coupling of ions in fertilizer salts render it difficult to effectively manage ion-specific nutrient solutions. Although ion-specific dosing algorithms have been established, their effectiveness has been inadequately explored. In this study, a decision-tree-based dosing algorithm was developed to calculate the optimal volumes of individual nutrient stock solutions to be supplied for five major nutrient ions, i.e., NO3, K, Ca, P, and Mg, based on the concentrations of NO3, K, and Ca and remaining volume of the recycled nutrient solution. In the performance assessment based on five nutrient solution samples encompassing the typical concentration ranges for leafy vegetable cultivation, the ion-selective electrode array demonstrated feasible accuracies, with root mean square errors of 29.5, 10.1, and 6.1 mg·L-1 for NO3, K, and Ca, respectively. In a five-step replenishment test involving varying target concentrations and nutrient solution volumes, the system formulated nutrient solutions according to the specified targets, exhibiting average relative errors of 10.6 ± 8.0%, 7.9 ± 2.1%, 8.0 ± 11.0%, and 4.2 ± 3.7% for the Ca, K, and NO3 concentrations and volume of the nutrient solution, respectively. Furthermore, the decision tree method helped reduce the total fertilizer injections and carbon emissions by 12.8% and 20.6% in the stepwise test, respectively. The findings demonstrate that the decision-tree-based dosing algorithm not only enables more efficient reuse of nutrient solution compared to the existing simplex method but also confirms the potential for reducing carbon emissions, indicating the possibility of sustainable agricultural development.

2.
Sensors (Basel) ; 22(15)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35898004

ABSTRACT

Growth indices can quantify crop productivity and establish optimal environmental, nutritional, and irrigation control strategies. A convolutional neural network (CNN)-based model is presented for estimating various growth indices (i.e., fresh weight, dry weight, height, leaf area, and diameter) of four varieties of greenhouse lettuce using red, green, blue, and depth (RGB-D) data obtained using a stereo camera. Data from an online autonomous greenhouse challenge (Wageningen University, June 2021) were employed in this study. The data were collected using an Intel RealSense D415 camera. The developed model has a two-stage CNN architecture based on ResNet50V2 layers. The developed model provided coefficients of determination from 0.88 to 0.95, with normalized root mean square errors of 6.09%, 6.30%, 7.65%, 7.92%, and 5.62% for fresh weight, dry weight, height, diameter, and leaf area, respectively, on unknown lettuce images. Using red, green, blue (RGB) and depth data employed in the CNN improved the determination accuracy for all five lettuce growth indices due to the ability of the stereo camera to extract height information on lettuce. The average time for processing each lettuce image using the developed CNN model run on a Jetson SUB mini-PC with a Jetson Xavier NX was 0.83 s, indicating the potential for the model in fast real-time sensing of lettuce growth indices.


Subject(s)
Lactuca/growth & development , Neural Networks, Computer , Humans , Lactuca/classification , Plant Leaves/growth & development , Plant Roots/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...