Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Healthcare (Basel) ; 10(12)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36554021

ABSTRACT

Glaucoma is prominent in a variety of nations, with the United States and Europe being two of the most famous. Glaucoma now affects around 78 million people throughout the world (2020). By the year 2040, it is expected that there will be 111.8 million cases of glaucoma worldwide. In countries that are still building enough healthcare infrastructure to cope with glaucoma, the ailment is misdiagnosed nine times out of ten. To aid in the early diagnosis of glaucoma, the creation of a detection system is necessary. In this work, the researchers propose using a technology known as deep learning to identify and predict glaucoma before symptoms appear. The glaucoma dataset is used in this deep learning algorithm that has been proposed for analyzing glaucoma images. To get the required results when using deep learning principles for the job of segmenting the optic cup, pretrained transfer learning models are integrated with the U-Net architecture. For feature extraction, the DenseNet-201 deep convolution neural network (DCNN) is used. The DCNN approach is used to determine whether a person has glaucoma. The fundamental goal of this line of research is to recognize glaucoma in retinal fundus images, which will aid in assessing whether a patient has the condition. Because glaucoma can affect the model in both positive and negative ways, the model's outcome might be either positive or negative. Accuracy, precision, recall, specificity, the F-measure, and the F-score are some of the metrics used in the model evaluation process. An extra comparison study is performed as part of the process of establishing whether the suggested model is accurate. The findings are compared to convolution neural network classification methods based on deep learning. When used for training, the suggested model has an accuracy of 98.82 percent and an accuracy of 96.90 percent when used for testing. All assessments show that the new paradigm that has been proposed is more successful than the one that is currently in use.

2.
Comput Intell Neurosci ; 2022: 9194031, 2022.
Article in English | MEDLINE | ID: mdl-35281188

ABSTRACT

When it comes to our everyday life, emotions have a critical role to play. It goes without saying that it is critical in the context of mobile-computer interaction. In social and mobile communication, it is vital to understand the influence of emotions on the way people interact with one another and with the material they access. This study tried to investigate the relationship between the expressive state of mind and the efficacy of the human-mobile interaction while accessing a variety of different sorts of material over the course of learning. In addition, the difficulty of the feeling of many individuals is taken into account in this research. Human hardness is an important factor in determining a person's personality characteristics, and the material that they can access will alter depending on how they engage with a mobile device. It analyzes the link between the human-mobile interaction and the person's mental toughness to provide excellent suggestion material in the appropriate manner. In this study, an explicit feedback selection method is used to gather information on the emotional state of the mind of the participants. It has also been shown that the emotional state of a person's mind influences the human-mobile connection, with persons with varying levels of hardness accessing a variety of various sorts of material. It is hoped that this research will assist content producers in identifying engaging material that will encourage mobile users to promote good content by studying their personality features.


Subject(s)
Deep Learning , Social Media , Electronics , Emotions , Humans , Sentiment Analysis
3.
J Healthc Eng ; 2022: 1128217, 2022.
Article in English | MEDLINE | ID: mdl-35281546

ABSTRACT

The field of image processing is distinguished by the variety of functions it offers and the wide range of applications it has in biomedical imaging. It becomes a difficult and time-consuming process for radiologists to do the manual identification and categorization of the tumour. It is a complex and time-consuming procedure conducted by radiologists or clinical professionals to remove the contaminated tumour region from magnetic resonance (MR) pictures. It is the goal of this study to improve the performance and reduce the complexity of the image segmentation process by investigating FCM predicted image segmentation procedures in order to reduce the intricacy of the process. Furthermore, relevant characteristics are collected from each segmented tissue and aligned as input to the classifiers for autonomous identification and relegation of encephalon cancers in order to increase the accuracy and quality rate of the neural network classifier. An evaluation, validation, and presentation of the experimental performance of the suggested approach have been completed. A unique APSO (accelerated particle swarm optimization) based artificial neural network model (ANNM) for the relegation of benign and malignant tumours is presented in this study effort, which allows for the automated identification and categorization of brain tumours. Using APSO training to improve the suggested ANNM model parameters would give a unique method to alleviate the stressful work of radiologists performing manual identification of encephalon cancers from MR images. The use of an APSO-based ANNM (artificial neural network model) model for automated brain tumour classification has been presented in order to demonstrate the resilience of the classification model. It has been suggested to utilise the improved enhanced fuzzy c means (IEnFCM) method for image segmentation, while the GLCM (gray level co-occurrence matrix) feature extraction approach has been employed for feature extraction from magnetic resonance imaging (MR pictures).


Subject(s)
Algorithms , Brain Neoplasms , Brain Neoplasms/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods , Machine Learning , Magnetic Resonance Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...