Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Saudi J Biol Sci ; 30(9): 103753, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37583871

ABSTRACT

Micrococcus luteus, also known as M. luteus, is a bacterium that inhabits mucous membranes, human skin, and various environmental sources. It is commonly linked to infections, especially among individuals who have compromised immune systems. M. luteus is capable of synthesizing the enzyme superoxide dismutase (SOD) as a component of its protective response to reactive oxygen species (ROS). This enzyme serves as a promising target for drug development in various diseases. The current study utilized a subtractive genomics approach to identify potential therapeutic targets from M. luteus. Additionally, genome mining was employed to identify and characterize the biosynthetic gene clusters (BGCs) responsible for the production of secondary metabolites in Bacillus licheniformis (B. licheniformis), a bacterium known for its production of therapeutically relevant secondary metabolites. Subtractive genomics resulted in identification of important extracellular protein SOD as a drug target that plays a crucial role in shielding cells from damage caused by ROS. Genome mining resulted in identification of five potential ligands (secondary metabolites) from B. licheniformis such as, Bacillibactin (BAC), Paenibactin (PAE), Fengycin (FEN), Surfactin (SUR) and Lichenysin (LIC). Molecular docking was used to predict and analyze the binding interactions between these five ligands and target protein SOD. The resulting protein-ligand complexes were further analyzed for their motions and interactions of atoms and molecules over 250 ns using molecular dynamics (MD) simulation analysis. The analysis of MD simulations suggests, Bacillibactin as the probable candidate to arrest the activities of SOD. All the five compounds reported in this study were found to act by directly/indirectly interacting with ROS molecules, such as superoxide radicals (O2-) and hydrogen peroxide (H2O2), and transforming them into less reactive species. This antioxidant activity contributes to its protective effects against oxidative stress-induced damage in cells making them likely candidate for various applications, including in the development of antioxidant-based therapies, nutraceuticals, and functional foods.

2.
J Cell Commun Signal ; 17(1): 217-227, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36480100

ABSTRACT

Orexins are excitatory neuropeptides, which are predominantly associated with feeding behavior, sleep-wake cycle and energy homeostasis. The orexinergic system comprises of HCRTR1 and HCRTR2, G-protein-coupled receptors of rhodopsin family and the endogenous ligands processed from HCRT pro-hormone, Orexin A and Orexin B. These neuropeptides are biosynthesized by the orexin neurons present in the lateral hypothalamus area, with dense projections to other brain regions. The orexin-receptor signaling is implicated in various metabolic as well as neurological disorders, making it a promising target for pharmacological interventions. However, there is limited information available on the collective representation of the signal transduction pathways pertaining to the orexin-orexin receptor signaling system. Here, we depict a compendium of the Orexin A/B stimulated reactions in the form of a basic signaling pathway map. This map catalogs the reactions into five categories: molecular association, activation/inhibition, catalysis, transport, and gene regulation. A total of 318 downstream molecules were annotated adhering to the guidelines of NetPath curation. This pathway map can be utilized for further assessment of signaling events associated with orexin-mediated physiological functions and is freely available on WikiPathways, an open-source pathway database ( https://www.wikipathways.org/index.php/Pathway:WP5094 ).

3.
Bioimpacts ; 10(2): 123-135, 2020.
Article in English | MEDLINE | ID: mdl-32363156

ABSTRACT

Introduction: Serratia marcescens, an opportunistic human pathogen, is reported as an important cause of nosocomial infection and outbreaks. Although the genome of S. marcescens (ATCC 13880) was completely sequenced by 2014, there are no studies on the proteomic profile of the organism. The objective of the present study is to analyze the protein profile of S. marcescens (ATCC 13880) using a high resolution mass spectrometry (MS). Methods: Serratia marcescens ATCC 13880 strain was grown in Luria-Bertani broth and the protein extracted was subjected to trypsin digestion, followed by basic reverse phase liquid chromatography fractionation. The peptide fractions were then analysed using Orbitrap Fusion Mass Spectrometry and the raw MS data were processed in Proteome Discoverer software. Results: The proteomic analysis identified 15 009 unique peptides mapping to 2541 unique protein groups, which corresponds to approximately 54% of the computationally predicted protein-coding genes. Bioinformatic analysis of these identified proteins showed their involvement in biological processes such as cell wall organization, chaperone-mediated protein folding and ATP binding. Pathway analysis revealed that some of these proteins are associated with bacterial chemotaxis and beta-lactam resistance pathway. Conclusion: To the best of our knowledge, this is the first high-throughput proteomics study of S. marcescens (ATCC 13880). These novel observations provide a crucial baseline molecular profile of the S. marcescens proteome which will prove to be helpful for the future research in understanding the host-pathogen interactions during infection, elucidating the mechanism of multidrug resistance, and developing novel diagnostic markers or vaccine for the disease.

4.
J Biomol Struct Dyn ; 38(13): 3757-3771, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31514687

ABSTRACT

Metallo-beta-lactamase (MBL) is a class of enzyme that catalyzes the hydrolysis of a broad range of beta-lactam antibiotics leading to the development of drug resistance in bacteria. Inhibition of MBL is therefore pursued as a potential way to increase the susceptibility of bacteria to beta-lactam antibiotics. In this study, MBL inhibitors from natural sources such as Eupalitin, Rosmarinic acid and Luteolin are used as a potential alternative to explore their effect. The crystal structure of MBL revealed a hydrolyzed Meropenem, which was undocked from the active center pocket to get the apo-protein. The apo-protein was re-docked with substrate, three known MBL inhibitors and natural compounds to prepare the starting structure in the current work and to draw conclusions. Further, to explore the efficiency of natural inhibitors, we analyzed the dynamic behavior of the enzyme over simulation time using molecular dynamics studies. Our results suggest that MBL enzyme adopted altered conformational state in the presence of natural inhibitor. This is because, the natural inhibitors were tried to occupy a different binding pocket in the enzyme by causing positional drift from the active center pocket. Here, the different binding pocket partly comprised of active site pocket and partly by a new region explored by ligand, making it inappropriate for substrate to occupy the active site. Thus natural inhibitors may be potential entities to target MBL. AbbreviationsADMEAbsorption, Distribution, Metabolism and ExcretionBBBBlood brain barrierCHARMMChemistry at Harvard Macromolecular MechanicsCOMCenter of MassCYP2D6Cytochrome P450 2D6DSDiscovery StudioESBLExtended Spectrum Beta-lactamasesFDAFood and Drug AdministrationGLASSGlobal antimicrobial resistance surveillance systemGROMACSGROningen MAchine for Chemical SimulationsKDEKernel Density Estimation PlotsMBLMetallo-beta-lactamaseMBL-CMetallo-beta-lactamase bound to L-CaptoprilMBL-EMetallo-beta -lactamase bound to EupalitinMBL-IMetallo-beta -lactamase bound to ImipenemMBL-LMetallo-beta -lactamase bound to LuteolinMBL-RMetallo-beta -lactamase bound to Rosmarinic acidMDMolecular DynamicsMMPBSAMolecular Mechanics Poisson - Boltzmann surface areaNPTNumber of atoms in the system, Pressure of the system and Temperature of the systemnsNano secondsNVTNumber of atoms in the system, Volume of the system, and Temperature of the systemPDBProtein Data BankRgRadius of GyrationRMSDRoot Mean Square DeviationRMSFRoot Mean Square FluctuationSASASolvent Accessible Surface AreaSPC/ESimple Point ChargeWHOWorld Health OrganizationCommunicated by Ramaswamy H. Sarma.


Subject(s)
beta-Lactamase Inhibitors , beta-Lactamases , Anti-Bacterial Agents/pharmacology , Bacteria , Enzyme Inhibitors , Meropenem , beta-Lactamase Inhibitors/pharmacology
5.
J Taibah Univ Med Sci ; 12(3): 221-228, 2017 Jun.
Article in English | MEDLINE | ID: mdl-31435243

ABSTRACT

OBJECTIVE: The CCND1 gene expresses a protein, G1/S-specific cyclin, that regulates the G1/S transition in the cell cycle and also inhibits retinoblastoma (RB) proteins. Overexpression or rearrangements of this gene can result in various tumours. This study aimed to identify possible deleterious non-synonymous single nucleotide polymorphisms (SNP's) of CCND1 using computational methods. METHODS: SNPs in the human CCND1 gene were retrieved from dbSNP. These SNPs were screened by the Sorting Intolerant From Tolerant (SIFT) algorithm and the PredictSNP classification. Mutants with deleterious SNPs were built using Discovery Studio 3.5, and dynamics studies were performed on native and mutant varieties. RESULTS: In Homo sapiens, 1194 SNPs were found, of which 94 were missense and 2 were nonsense SNPs. Three SNPs were found to be deleterious. Molecular dynamics and trajectory analysis showed that there was a significant deviation of the root mean square deviation (RMSD) values in the N216K mutant from the values of the native protein. CONCLUSION: Based on this study, we propose that the SNP with SNP ID rs112525097 (NM_053056.2:c.648C>G) might cause aberrations in CCND1, which might lead to a change in the function of the G1/S-specific cyclin protein. This, in turn, may lead to the development of acute myeloid leukaemia (AML).

SELECTION OF CITATIONS
SEARCH DETAIL
...