Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Physiol ; 156(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38836782

ABSTRACT

Cholinergic signaling in the retina is mediated by acetylcholine (ACh) released from starburst amacrine cells (SACs), which are key neurons for motion detection. SACs comprise ON and OFF subtypes, which morphologically show mirror symmetry to each other. Although many physiological studies on SACs have targeted ON cells only, the synaptic computation of ON and OFF SACs is assumed to be similar. Recent studies demonstrated that gene expression patterns and receptor types differed between ON and OFF SACs, suggesting differences in their functions. Here, we compared cholinergic signaling pathways between ON and OFF SACs in the mouse retina using the patch clamp technique. The application of ACh increased GABAergic feedback, observed as postsynaptic currents to SACs, in both ON and OFF SACs; however, the mode of GABAergic feedback differed. Nicotinic receptors mediated GABAergic feedback in both ON and OFF SACs, while muscarinic receptors mediated GABAergic feedback in ON SACs only in adults. Neither tetrodotoxin, which blocked action potentials, nor LY354740, which blocked neurotransmitter release from SACs, eliminated ACh-induced GABAergic feedback in SACs. These results suggest that ACh-induced GABAergic feedback in ON and OFF SACs is regulated by different feedback mechanisms in adults and mediated by non-spiking amacrine cells other than SACs.


Subject(s)
Acetylcholine , Amacrine Cells , Animals , Amacrine Cells/metabolism , Mice , Acetylcholine/pharmacology , Acetylcholine/metabolism , Mice, Inbred C57BL , gamma-Aminobutyric Acid/metabolism , Receptors, Muscarinic/metabolism , Receptors, Nicotinic/metabolism
2.
J Neurochem ; 158(4): 837-848, 2021 08.
Article in English | MEDLINE | ID: mdl-33067823

ABSTRACT

Metabotropic glutamate receptor 6, mGluR6, interacts with scaffold proteins and Gßγ subunits via its intracellular C-terminal domain (CTD). The mGluR6 pathway is critically involved in the retinal processing of visual signals. We herein investigated whether the CTD (residues 840-871) was necessary for mGluR6 cell surface localization and G-protein coupling using mGluR6-CTD mutants with immunocytochemistry, surface biotinylation assays, and electrophysiological approaches. We used 293T cells and primary hippocampal neurons as model systems. We examined C-terminally truncated mGluR6 and showed that the removal of up to residue 858 did not affect surface localization or glutamate-induced G-protein-mediated responses, whereas a 15-amino acid deletion (Δ857-871) impaired these functions. However, a 21-amino acid deletion (Δ851-871) restored surface localization and glutamate-dependent responses, which were again attenuated when the entire CTD was removed. The sequence alignment of group III mGluRs showed conserved amino acids resembling an ER retention motif in the CTD. These results suggest that the intracellular CTD is required for the cell surface transportation and receptor function of mGluR6, whereas it may contain regulatory elements for intracellular trafficking and signaling.


Subject(s)
G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Receptors, Cell Surface/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Glutamate/metabolism , Amino Acids/metabolism , Animals , Biotinylation , Cell Line , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , Gene Deletion , Glutamic Acid/pharmacology , Humans , Mutation/genetics , Rats , Receptors, Glutamate/genetics , Signal Transduction/genetics
3.
Nat Neurosci ; 8(8): 1087-95, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15995702

ABSTRACT

Synchronized oscillatory activity is generated among visual neurons in a manner that depends on certain key features of visual stimulation. Although this activity may be important for perceptual integration, its functional significance has yet to be explained. Here we find a very strong correlation between synchronized oscillatory activity in a class of frog retinal ganglion cells (dimming detectors) and a well-known escape response, as shown by behavioral tests and multi-electrode recordings from isolated retinas. Escape behavior elicited by an expanding dark spot was suppressed and potentiated by intraocular injection of GABA(A) receptor and GABA(C) receptor antagonists, respectively. Changes in escape behavior correlated with antagonist-evoked changes in synchronized oscillatory activity but not with changes in the discharge rate of dimming detectors. These antagonists did not affect the expanding dark spot-induced responses in retinal ganglion cells other than dimming detectors. Thus, synchronized oscillations in the retina are likely to encode escape-related information in frogs.


Subject(s)
Escape Reaction/physiology , Rana catesbeiana/physiology , Retinal Ganglion Cells/physiology , Animals , Bicuculline/pharmacology , Electrophysiology , Escape Reaction/drug effects , GABA Antagonists/pharmacology , GABA-A Receptor Antagonists , In Vitro Techniques , Nystagmus, Optokinetic/drug effects , Oscillometry , Phosphinic Acids/pharmacology , Pyridines/pharmacology , Receptors, GABA , Retinal Ganglion Cells/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...