Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 110(18): 187202, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23683240

ABSTRACT

Dynamic dipolar interactions between spin wave eigenmodes of closely spaced nanomagnets determine the collective behavior of magnonic and spintronic metamaterials and devices. However, dynamic dipolar interactions are difficult to quantify since their effects must be disentangled from those of static dipolar interactions and variations in the shape, size, and magnetic properties of the nanomagnets. It is shown that when two imperfect nanoscale magnetic disks with similar but nonidentical modes are brought into close proximity, the effect of the dynamic dipolar interaction can be detected by considering the difference of the phase of precession within the two disks. Measurements show that the interaction is stronger than expected from micromagnetic simulations, highlighting both the need for characterization and control of magnetic properties at the deep nanoscale, and also the potential for improved control of collective magnetic phenomena. Our approach is equally applicable to other physical systems in which dynamic interactions are obscured by inhomogeneous broadening and static interactions.

2.
Philos Trans A Math Phys Eng Sci ; 369(1948): 3115-35, 2011 Aug 13.
Article in English | MEDLINE | ID: mdl-21727117

ABSTRACT

The ultrafast (sub-nanosecond) magnetization dynamics of ferromagnetic thin films and elements that find application in spintronic devices is reviewed. The major advances in the understanding of magnetization dynamics in the two decades since the discovery of giant magnetoresistance and the prediction of spin-transfer torque are discussed, along with the plethora of new experimental techniques developed to make measurements on shorter length and time scales. Particular consideration is given to time-resolved measurements of the magneto-optical Kerr effect, and it is shown how a succession of studies performed with this technique has led to an improved understanding of the dynamics of nanoscale magnets. The dynamics can be surprisingly rich and complicated, with the latest studies of individual nanoscale elements showing that the dependence of the resonant mode spectrum upon the physical structure is still not well understood. Finally, the article surveys the prospects for development of high-frequency spintronic devices and highlights areas in which further study of fundamental properties will be required within the coming decade.

SELECTION OF CITATIONS
SEARCH DETAIL
...