Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Digit Imaging ; 36(4): 1376-1389, 2023 08.
Article in English | MEDLINE | ID: mdl-37069451

ABSTRACT

We present a novel algorithm that is able to generate deep synthetic COVID-19 pneumonia CT scan slices using a very small sample of positive training images in tandem with a larger number of normal images. This generative algorithm produces images of sufficient accuracy to enable a DNN classifier to achieve high classification accuracy using as few as 10 positive training slices (from 10 positive cases), which to the best of our knowledge is one order of magnitude fewer than the next closest published work at the time of writing. Deep learning with extremely small positive training volumes is a very difficult problem and has been an important topic during the COVID-19 pandemic, because for quite some time it was difficult to obtain large volumes of COVID-19-positive images for training. Algorithms that can learn to screen for diseases using few examples are an important area of research. Furthermore, algorithms to produce deep synthetic images with smaller data volumes have the added benefit of reducing the barriers of data sharing between healthcare institutions. We present the cycle-consistent segmentation-generative adversarial network (CCS-GAN). CCS-GAN combines style transfer with pulmonary segmentation and relevant transfer learning from negative images in order to create a larger volume of synthetic positive images for the purposes of improving diagnostic classification performance. The performance of a VGG-19 classifier plus CCS-GAN was trained using a small sample of positive image slices ranging from at most 50 down to as few as 10 COVID-19-positive CT scan images. CCS-GAN achieves high accuracy with few positive images and thereby greatly reduces the barrier of acquiring large training volumes in order to train a diagnostic classifier for COVID-19.


Subject(s)
COVID-19 , Pandemics , Humans , COVID-19/diagnostic imaging , Tomography, X-Ray Computed/methods , Algorithms , Lung , Image Processing, Computer-Assisted/methods
2.
ArXiv ; 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35169595

ABSTRACT

With the emergence of Artificial Intelligence (AI), new attention has been given to implement AI algorithms on resource constrained tiny devices to expand the application domain of IoT. Multimodal Learning has recently become very popular with the classification task due to its impressive performance for both image and audio event classification. This paper presents TinyM2Net - a flexible system algorithm co-designed multimodal learning framework for resource constrained tiny devices. The framework was designed to be evaluated on two different case-studies: COVID-19 detection from multimodal audio recordings and battle field object detection from multimodal images and audios. In order to compress the model to implement on tiny devices, substantial network architecture optimization and mixed precision quantization were performed (mixed 8-bit and 4-bit). TinyM2Net shows that even a tiny multimodal learning model can improve the classification performance than that of any unimodal frameworks. The most compressed TinyM2Net achieves 88.4% COVID-19 detection accuracy (14.5% improvement from unimodal base model) and 96.8% battle field object detection accuracy (3.9% improvement from unimodal base model). Finally, we test our TinyM2Net models on a Raspberry Pi 4 to see how they perform when deployed to a resource constrained tiny device.

3.
J Biomed Inform ; 50: 32-45, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24412834

ABSTRACT

Privacy has always been a great concern of patients and medical service providers. As a result of the recent advances in information technology and the government's push for the use of Electronic Health Record (EHR) systems, a large amount of medical data is collected and stored electronically. This data needs to be made available for analysis but at the same time patient privacy has to be protected through de-identification. Although biomedical researchers often describe their research plans when they request anonymized data, most existing anonymization methods do not use this information when de-identifying the data. As a result, the anonymized data may not be useful for the planned research project. This paper proposes a data recipient centered approach to tailor the de-identification method based on input from the recipient of the data. We demonstrate our approach through an anonymization project for biomedical researchers with specific goals to improve the utility of the anonymized data for statistical models used for their research project. The selected algorithm improves a privacy protection method called Condensation by Aggarwal et al. Our methods were tested and validated on real cancer surveillance data provided by the Kentucky Cancer Registry.


Subject(s)
Patient Identification Systems , Privacy , Electronic Health Records
4.
AMIA Annu Symp Proc ; : 955, 2007 Oct 11.
Article in English | MEDLINE | ID: mdl-18694055

ABSTRACT

The objective of the current study was to explore the value of machine learning techniques for forecasting asthma exacerbations based on data obtained home asthma telemonitoring systems.


Subject(s)
Artificial Intelligence , Asthma/diagnosis , Telemedicine , Algorithms , Decision Making, Computer-Assisted , Home Care Services , Humans , Monitoring, Physiologic/methods , Self Care
SELECTION OF CITATIONS
SEARCH DETAIL
...