Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 102(14): 6221-6234, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29855689

ABSTRACT

Protein expression in the milk of transgenic farmed animals offers a cost-effective system for producing therapeutics. However, transgenesis in farmed animals is not only cumbersome but also involves risk of potential hazard by germline gene integration, due to interruptions caused by the transgene in the native genome. Avoiding germline gene integration, we have delivered buffalo ß-casein promoter-driven transgene construct entrapped in virosomes directly in the milk gland through intraductal perfusion delivery. Virosomes were generated from purified Sendai viral membrane, containing hemagglutinin-neuraminidase (HN) and fusion factor (F) proteins on surface (HNF-Virosomes) which initiate membrane fusion, devoid of any viral nucleic acids. Intraductal delivery of HNF-Virosomes predominantly transfected luminal epithelial cells lining the milk duct and buffalo ß-casein promoter of the construct ensured mammary luminal epithelial cell specific expression of the transgene. Mammary epithelial cells expressed EGFP at lactation when egfp was used as a transgene. Similarly, human interferon-γ (hIFN-γ) was expressed in the mammary gland as well as in the milk when hIFN-γ was used as a transgene. This combinatorial approach of using Sendai viral membrane-derived virosomes for entrapment and delivery of the transgene and using buffalo ß-casein promoter for mammary gland specific gene expression provided a better option for generating therapeutic proteins in milk, bypassing germline gene integration avoiding risks associated with animal bioreactor generated through germline gene integration.


Subject(s)
Biological Therapy/methods , Buffaloes/genetics , Gene Expression/genetics , Lactation/genetics , Mammary Glands, Animal/metabolism , Milk/chemistry , Transgenes/genetics , Animals , Caseins/genetics , Female , Humans , Promoter Regions, Genetic/genetics , Sendai virus/genetics
2.
Front Microbiol ; 8: 706, 2017.
Article in English | MEDLINE | ID: mdl-28484443

ABSTRACT

HIV-1 evades host defense through mutations and recombination events, generating numerous variants in an infected patient. These variants with an undiminished virulence can multiply rapidly in order to progress to AIDS. One of the targets to intervene in HIV-1 replication is the trans-activator of transcription (Tat), a major regulatory protein that transactivates the long terminal repeat promoter through its interaction with trans-activation response (TAR) RNA. In this study, HIV-1 infected patients (n = 120) from North India revealed Ser46Phe (20%) and Ser61Arg (2%) mutations in the Tat variants with a strong interaction toward TAR leading to enhanced transactivation activities. Molecular dynamics simulation data verified that the variants with this mutation had a higher binding affinity for TAR than both the wild-type Tat and other variants that lacked Ser46Phe and Ser61Arg. Other mutations in Tat conferred varying affinities for TAR interaction leading to differential transactivation abilities. This is the first report from North India with a clinical validation of CD4 counts to demonstrate the influence of Tat genetic variations affecting the stability of Tat and its interaction with TAR. This study highlights the co-evolution pattern of Tat and predominant nucleotides for Tat activity, facilitating the identification of genetic determinants for the attenuation of viral gene expression.

3.
Mol Ther Methods Clin Dev ; 3: 16076, 2016.
Article in English | MEDLINE | ID: mdl-27933305

ABSTRACT

Our ability to decipher gene sequences has increased enormously with the advent of modern sequencing tools, but the ability to divulge functions of new genes have not increased correspondingly. This has caused a remarkable delay in functional interpretation of several newly found genes in tissue and age specific manner, limiting the pace of biological research. This is mainly due to lack of advancements in methodological tools for transgenesis. Predominantly practiced method of transgenesis by pronuclear DNA-microinjection is time consuming, tedious, and requires highly skilled persons for embryo-manipulation. Testicular electroporation mediated transgenesis requires use of electric current to testis. To this end, we have now developed an innovative technique for making transgenic mice by giving hypotonic shock to male germ cells for the gene delivery. Desired transgene was suspended in hypotonic Tris-HCl solution (pH 7.0) and simply injected in testis. This resulted in internalization of the transgene in dividing germ-cells residing at basal compartment of tubules leading to its integration in native genome of mice. Such males generated transgenic progeny by natural mating. Several transgenic animals can be generated with minimum skill within short span of time by this easily adaptable novel technique.

4.
Stem Cell Res Ther ; 7(1): 142, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27659063

ABSTRACT

BACKGROUND: Spermatogonial stem cell (SSC) transplantation (SSCT) has become important for conservation of endangered species, transgenesis and for rejuvenating testes which have lost germ cells (Gc) due to gonadotoxic chemotherapy or radiotherapy during the prepubertal phase of life. Creating a germ cell-depleted animal model for transplantation of normal or gene-transfected SSC is a prerequisite for such experimental studies. Traditionally used intraperitoneal injections of busulfan to achieve this are associated with painful hematopoietic toxicity and affects the wellbeing of the animals. Use of testicular busulfan has been reported recently to avoid this but with a very low success rate of SSCT. Therefore, it is necessary to establish a more efficient method to achieve higher SSCT without any suffering or mortality of the animals. METHODS: A solution of busulfan, ranging from 25 µg/20 µl to 100 µg/20 µl in 50 % DMSO was used for this study. Each testis received two diagonally opposite injections of 10 µl each. Only DMSO was used as control. Germ cell depletion was checked every 15 days. GFP-expressing SSC from transgenic donor mice C57BL/6-Tg (UBC-GFP) 30Scha/J were transplanted into busulfan-treated testis. Two months after SSCT, mice were analyzed for presence of colonies of donor-derived SSC and their ability to generate offspring. RESULTS: A dose of 75 µg of busulfan resulted in reduction of testis size and depletion of the majority of Gc of testis in all mice within 15 days post injection without causing mortality or a cytotoxic effect in other organs. Two months after SSCT, colonies of donor-derived Gc-expressing GFP were observed in recipient testes. When cohabitated with females, donor-derived offspring were obtained. By our method, 71 % of transplanted males sired transgenic progeny as opposed to 5.5 % by previously described procedures. About 56 % of progeny born were transgenic by our method as opposed to 1.2 % by the previously reported methods. CONCLUSIONS: We have established an efficient method of generating a germ cell-depleted animal model by using a lower dose of busulfan, injected through two diagonally opposite sites in the testis, which allows efficient colonization of transplanted SSC resulting in a remarkably higher proportion of donor-derived offspring generation.

5.
J Biotechnol ; 198: 53-9, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25678138

ABSTRACT

Therapeutic proteins are produced in microbes, mammalian cell lines, and body fluids by applying recombinant DNA technology. They are required for compensating the deficiency of essential proteins in patients. Animal bioreactors producing such valuable bio-pharmaceuticals in body fluids have lately emerged as efficient and cost-effective expression systems. Promoters, along with other regulatory elements of genes coding for milk proteins, have been cloned from few species for directing the expression of desired proteins in the milk of farm animals. However, buffaloes, which are the second largest source of milk production in the world, have remained unexplored for such use. Since mammary epithelial cell-specific ß-casein is the most abundantly expressed protein found in buffalo milk, we have isolated the promoter region and the transcriptional regulatory element along with exon 1, Intron 1 and partial exon 2 of the ß-casein gene from the genome of the Indian river buffalo (Bubalus bubalis) and have characterized the same (GenBank accession no. KF612339). Mammary epithelial cells of buffalo and human (MCF7) expressed Enhanced green fluorescent protein (EGFP) upon transfection with the construct where egfp was cloned under the ß-casein promoter. Transfected HEK-293 cells failed to express EGFP. Transgenic female mice generated using this construct expressed EGFP in the milk gland during lactation, without leaky expression in any other organs. This promoter also drove expression of recombinant human Interferonγ suggesting its use for expressing recombinant bio-pharmaceuticals in the milk of buffalo or other farm animals. Additionally, this may also allow breast gland-specific gene expression for remediation of breast gland-associated diseases.


Subject(s)
Buffaloes/genetics , Caseins/genetics , Epithelial Cells/metabolism , Gene Expression/genetics , Promoter Regions, Genetic/genetics , Animals , Animals, Domestic/genetics , Animals, Domestic/metabolism , Buffaloes/metabolism , Caseins/metabolism , Cell Line , Cell Line, Tumor , Exons/genetics , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Introns/genetics , Lactation/genetics , MCF-7 Cells , Male , Mice , Mice, Transgenic , Milk/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Regulatory Elements, Transcriptional/genetics , Transfection/methods
6.
Sci Rep ; 3: 3430, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24305437

ABSTRACT

Microinjection of foreign DNA in male pronucleus by in-vitro embryo manipulation is difficult but remains the method of choice for generating transgenic animals. Other procedures, including retroviral and embryonic stem cell mediated transgenesis are equally complicated and have limitations. Although our previously reported technique of testicular transgenesis circumvented several limitations, it involved many steps, including surgery and hemicastration, which carried risk of infection and impotency. We improved this technique further, into a two step non-surgical electroporation procedure, for making transgenic mice. In this approach, transgene was delivered inside both testes by injection and modified parameters of electroporation were used for in-vivo gene integration in germ cells. Using variety of constructs, germ cell integration of the gene and its transmission in progeny was confirmed by PCR, slot blot and immunohistochemical analysis. This improved technique is efficient, requires substantially less time and can be easily adopted by various biomedical researchers.


Subject(s)
Gene Transfer Techniques , Germ Cells/metabolism , Transgenes , Animals , Animals, Genetically Modified , Electroporation/methods , Gene Expression , Genes, Reporter , Male , Mice , Mice, Transgenic , Testis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...