Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(51): 48179-48191, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31795638

ABSTRACT

Meticulous surface engineering of layered structures toward new functionalities is a demanding challenge to the scientific community. Here, we introduce defects on varied MoS2 surfaces by suitable doping of nitrogen atoms in a sulfur-rich reaction environment, resulting in stable and scalable phase conversion. The experimental characterizations along with the theoretical calculations within the framework of density functional theory establish the impact of nitrogen doping on stabilization of defects and reconstruction of the 2H to 1T phase. The as-synthesized MoS2 samples exhibit excellent dye removal capacity in the dark, facilitated by a synergistic effect of reactive oxygen species (ROS) generation and adsorption. Positron annihilation spectroscopy and electron paramagnetic resonance studies substantiate the role of defects and associated sulfur vacancies toward ROS generation in the dark. Further, on the basis of its ample ROS generation in the dark and in the light, the commendable antimicrobial activity of the prepared MoS2 samples against fungal pathogen Alternaria alternata has been demonstrated. Thus, the present study opens up a futuristic avenue to develop newer functional materials through defect engineering by suitable dopants toward superior performances in environment issues.


Subject(s)
Antifungal Agents/chemistry , Molybdenum/chemistry , Nanostructures/chemistry , Antifungal Agents/pharmacology , Microscopy, Electron, Scanning , Nanostructures/ultrastructure , Reactive Oxygen Species/metabolism , Tomography, X-Ray Computed
2.
Inorg Chem ; 56(9): 4956-4965, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28426209

ABSTRACT

Two new lanthanide-based 3D metal-organic frameworks (MOFs), {[Ln(L)(Ox)(H2O)]n·xH2O} [Ln = Gd3+ and x = 3 (1) and Dy3+ and x = 1.5 (2); H2L = mucic acid; OxH2 = oxalic acid] showing interesting magnetic properties and channel-mediated proton conduction behavior, are presented here. Single-crystal X-ray structure analysis shows that, in complex 1, the overall structure originates from the mucate-bridged gadolinium-based rectangular metallocycles. The packing view reveals the presence the two types of hydrophilic 1D channels filled with lattice water molecules, which are strongly hydrogen-bonded with coordinated water along the a and b axes, whereas for complex 2, the 3D framework originates from a carboxylate-bridged dysprosium-based criss-cross-type secondary building block. Magnetic studies reveal that 1 exhibits a significant magnetic entropy change (-ΔSM) of 30.6 J kg-1 K-1 for ΔH= 7 T at 3 K. Our electronic structure calculations under the framework of density functional theory reveal that exchange interactions between Gd3+ ions are weak and of the antiferromagnetic type. Complex 2 shows field-induced single-molecule-magnetic behavior. Impedance analysis shows that the proton conductivity of both complexes reaches up to the maximum value of 4.7 × 10-4 S cm-1 for 1 and 9.06 × 10-5 S cm-1 for 2 at high temperature (>75 °C) and relative humidity (RH; 95%). The Monte Carlo simulations confirm the exact location of the adsorbed water molecules in the framework after humidification (RH = 95%) for 1. Further, the results from computational simulation also reveal that the presence of a more dense arrangement of adsorbed water molecules through hydrogen bonding in a particular type of channel (along the a axis) contributes more to the proton migration compared to the other channel (along the b axis) in the framework.

3.
Phys Rev Lett ; 113(12): 127201, 2014 Sep 19.
Article in English | MEDLINE | ID: mdl-25279639

ABSTRACT

We use density functional theory calculations to show that the LaAlO3|SrTiO3 interface between insulating perovskite oxides is borderline in satisfying the Stoner criterion for itinerant ferromagnetism and explore other oxide combinations with a view to satisfying it more amply. The larger lattice parameter of a LaScO3|BaTiO3 interface is found to be less favorable than the greater interface distortion of LaAlO3|CaTiO3. Compared to LaAlO3|SrTiO3, the latter is predicted to exhibit robust magnetism with a larger saturation moment and a higher Curie temperature. Our results provide support for a "two phase" picture of coexistent superconductivity and ferromagnetism.


Subject(s)
Calcium Compounds/chemistry , Magnets/chemistry , Models, Theoretical , Oxides/chemistry , Titanium/chemistry , Aluminum Oxide/chemistry , Lanthanum/chemistry , Models, Chemical , Scandium/chemistry
4.
J Phys Condens Matter ; 24(50): 505501, 2012 Dec 19.
Article in English | MEDLINE | ID: mdl-23165128

ABSTRACT

We present a detailed study of the magnetic properties of unique cluster assembled solids, namely Mn-doped Ge(46) and Ba(8)Ge(46) clathrates using density functional theory. We find that ferromagnetic ground states may be realized in both compounds when doped with Mn. In Mn(2)Ge(44), ferromagnetism is driven by hybridization-induced negative exchange splitting, a generic mechanism operating in many diluted magnetic semiconductors. However, for Mn-doped Ba(8)Ge(46) clathrates incorporation of conduction electrons via Ba encapsulation results in RKKY-like magnetic interactions between the Mn ions. We show that our results are consistent with the major experimental observations for this system.

SELECTION OF CITATIONS
SEARCH DETAIL
...