Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 351: 119917, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183950

ABSTRACT

Air conditioners alleviate the discomfort of human beings from heat waves that are consequences of climate change caused by anthropogenic activities. With each passing year, the effects of global warming worsen, increasing the growth of air conditioning industry. Air conditioning units produce substantial amounts of non-nutritive and (generally) neglected condensate water and greenhouse gases. Considering this, the study explored the potential of using air conditioner condensate water (ACW) to cultivate Chlorella sorokiniana, producing biomass, and sequestering carbon dioxide (CO2). The maximum biomass production was obtained in the BG11 medium (1.45 g L-1), followed by ACW-50 (1.3 g L-1). Similarly, the highest chlorophyll-a content was observed in the BG11 medium (11 µg mL-1), followed by ACW-50 (9.11 µg mL-1). The ACW-50 cultures proved to be better adapted to physiological stress (Fv/Fm > 0.5) and can be suitable for achieving maximum biomass with adequate lipid, protein, and carbohydrate production. Moreover, C. sorokiniana demonstrated higher lipid and carbohydrate yields in the ACW-50 medium, while biomass production and protein yields were comparable to the BG11 medium. The lipid, protein, and carbohydrate productivity were 23.43, 32.9, and 23.19 mg L-1 d-1, respectively for ACW-50. Estimation of carbon capture potential through this approach equals to 9.5% of the total emissions which is an added advantage The results indicated that ACW could be effectively utilized for microalgae cultivation, reducing the reliance on freshwater for large-scale microalgal biomass production and reduce the carbon footprints of the air conditioning industry.


Subject(s)
Chlorella , Microalgae , Humans , Carbon Dioxide/metabolism , Microalgae/metabolism , Lipids , Water/metabolism , Biomass , Carbohydrates
2.
Sci Total Environ ; 743: 140518, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32653705

ABSTRACT

Microplastics (MPs) are contaminants of emerging concern that have gained considerable attention during the last few decades due to their adverse impact on living organisms and the environment. Recent studies have shown their ubiquitous presence in the environment including the atmosphere, soil, and water. Though several reviews have focused on the occurrence of microplastics in different habitats, little attention has been paid to their interaction with biological and chemical pollutants in the environment. This review therefore presents the state of knowledge on the interaction of MPs with chemicals and microbes in different environments. The distribution of MPs, the association of toxic chemicals with MPs, microbial association with MPs and the microbial-induced fate of MPs in the environment are discussed. The biodegradation and bioaccumulation of MPs by and in microbes and its potential impact on the food chain are also reviewed. The mechanisms driving these interactions and how these, in turn, affect living organisms however are not yet fully understood and require further attention.


Subject(s)
Plastics , Water Pollutants, Chemical/analysis , Environmental Monitoring , Microplastics , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...