Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Chemosphere ; 361: 142396, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38777194

ABSTRACT

This study focuses on the removal and risk assessment of twenty emerging contaminants (ECs) and heavy metals in a REMIX water treatment plant (RWTP) that produces drinking water from combination of wastewater reuse and desalination. The membrane biological reactor (MBR) exhibit removal rates exceeding 95% of pharmaceuticals like acetaminophen, trimethoprim, diclofenac, naproxen, and emtricitabine. The efficiency of brackish reverse osmosis (BWRO) in removing ECs is highlighted, showing substantial efficacy with reduction rates of 99.5%, 75.5%, and 51.2% for sulfamethoxazole, venlafaxine, and benzotriazole, respectively. The advanced oxidation process based on Fenton process reveals removal (>95%) of emtricitabine, efavirenz, and carbamazepine. The study confirms that the combination of treatment units within the RWTP effectively removes heavy metals (>90%), complying with acceptable limits. Risk quotient (RQ) calculations indicate the efficiency of the RWTP in EC removal, serving as benchmarks for public acceptance of reclaimed water. In the context of heavy metals, the study concludes negligible cancer risks associated with reclaimed water consumption over a lifetime. Quantitative structure-activity relationship and occurrence, persistence, bioaccumulation and toxicity (OPBT) models were used to assess EC risk. The study screened and identified potential persistant, bio accumulating and toxic PBT ECs. Critical control points (CCPs) in the RWTP are identified, with brackish and seawater reverse osmosis (BWRO and SWRO) and advanced oxidation process (AOP) recognized as pivotal in hazard management. The study provides valuable insights on the removal of ECs and heavy metals in a wastewater reuse process and demonstrates potential of adopted process configuration in supplying safe drinking water from wastewater recycling.


Subject(s)
Drinking Water , Metals, Heavy , Wastewater , Water Pollutants, Chemical , Water Purification , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Wastewater/chemistry , Risk Assessment , Water Purification/methods , Drinking Water/chemistry , Humans , Waste Disposal, Fluid/methods
2.
Environ Monit Assess ; 196(5): 450, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613635

ABSTRACT

Unscientific dumping of municipal solid waste (MSW) is a common practice in Kashmir. To have an environmentally friendly and sustainable waste management system, MSW was collected from nine study locations of this region. They were air-dried, then oven-dried at 105 °C for 24 h, segregated, and characterized for various components. The overall average organic waste was > 55%, plastic waste about 17%, inert material about 10%, paper 9%, and cloth waste 7%. The calorific value of paper and plastic wastes exhibited was 4910 kcal/kg, while organic waste had a calorific value of 1980 kcal/kg. The proximate analysis showed that the moisture content ranged from 16 to 29%, volatile matter ranged from 49 to 72%, ash content ranged from 0.03 to 5%, and fixed carbon ranged from 5 to 20%. In S7, the volatile matter content recorded the lowest value at 49.15%, while in S5, the volatile matter content was notably higher at 71.84%, indicating easier ignition. Further, elemental analysis revealed that the major elements in MSW were carbon and oxygen, 53% and 37%, respectively, with small traces of heavy metals with an average of 0.02% cadmium (Cd) and 0.006% lead (Pb). Moreover, field emission scanning electron microscopy (FESEM) micrographs provided confirmation that the majority of components in the MSW exhibited either partial or complete degradation, resulting in a rough surface texture. In addition, the presence of silica and other silicate groups was also detected. Fourier transform infrared spectroscopy (FT-IR) analysis revealed that the main functional groups were alcohol. In the X-ray diffraction (XRD) analysis, all the major mineral phases were detected between 20 and 30° 2θ, except for the peaks at 50-60° 2θ in S3 and S9 where catalysts such as zeolite Y and zeolite X were detected. Overall, the MSW had low moisture content but higher calorific value, making it a viable feedstock.


Subject(s)
Solid Waste , Zeolites , Spectroscopy, Fourier Transform Infrared , Environmental Monitoring , India , Carbon , Microscopy, Electron, Scanning
3.
Environ Sci Pollut Res Int ; 31(8): 12161-12173, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225494

ABSTRACT

In regions like Southeast Asia, Dhobi Ghats-traditional open-air laundromats-hold cultural significance and provide livelihoods to many people. These centers are near the riverbanks for easy access to water for washing. These Dhobi Ghats are among major sources of microfibers (MFs) in the waterbodies. However, there is no ample data that confirms their level of MF release into the waterbodies. This study reports for the first time the prevalence of microfibers (MFs) in wastewater from Dhobi Ghats in a North Indian city and comparatively assess them with the MF pollution from commercial laundries. A mean microfiber concentration of 3204 ± 270 MFs/L was observed in the discharged effluents of Dhobi Ghats, while a concentration at 36,923 ± 389 MFs/L was observed in effluents from commercial laundries. Pertinently, microfibers measuring less than 75 µm dominated in effluents of commercial laundries, accounting for 53% of the total. Conversely, microfibers within the 75-150-µm range were present in effluents of Dhobi Ghats, constituting 52%. Spectroscopic analyses by FTIR showed polyester and polyamides as the main polymers released from Dhobi Ghats. Ecological risk assessment demonstrated a potential environmental risk from the MF pollution from Dhobi Ghats and commercial laundries. The study also proposed a mitigation framework prioritizing both environmental protection and the sustenance of local livelihoods for reducing the microfiber pollution by the Dhobi Ghats.


Subject(s)
Plastics , Water Pollutants, Chemical , Humans , Plastics/analysis , Textiles/analysis , Water Pollutants, Chemical/analysis , Polyesters , Wastewater
4.
J Hazard Mater ; 465: 133445, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38198866

ABSTRACT

Stormwater represent a critical pathway for transporting microplastics (MPs) to surface waters. Due to complex dynamics of MPs in stormwater, its dispersion, weathering, risk, and transport are poorly understood. This review bridges those gaps by summarizing the latest findings on sources, abundance, characteristics, and dynamics involved in stormwater MP pollution. Weathering starts before or after MPs enter stormwater and is more pronounced on land due to continuous heat and mechanical stress. Land use patterns, rainfall intensity, MPs size and density, and drainage characteristics influence the transport of MPs in stormwater. Tire and road wear particles (TRWPs), littering, and road dust are major sources of MPs in stormwater. The concentrations of MPs varies from 0.38-197,000 particles/L globally. Further MP concentrations showed regional variations, highlighting the importance of local monitoring efforts needed to understand local pollution sources. We observed unique signatures associated with the shape and color of MPs. Fibers and fragments were widely reported, with transparent and black being the predominant colors. We conclude that the contribution of stormwater to MP pollution in surface waters is significantly greater than wastewater treatment plant effluents and demands immediate attention. Field and lab scale studies are needed to understand its behavior in stormwater and the risk posed to the downstream water bodies.

5.
Chemosphere ; 341: 139976, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37657704

ABSTRACT

The challenge of emerging contaminants (ECs) in global surface water bodies and particularly in low- and middle-income countries such as India, Pakistan, Bangladesh, and Sri Lanka, is evident from the literature. The complexity arises from the high costs involved in EC analysis and the extensive list of ECs, which complicates the selection of essential compounds for scientific and regulatory investigations. Consequently, monitoring programs often include ECs that may have minimal significance within a region and do not pose known or suspected ecological or human health risks. This study aims to address this issue by employing a multi-risk assessment approach to identify priority ECs in the surface waters of the aforementioned countries. Through an analysis of occurrence levels and frequency data gathered from published literature, an optimized risk quotient (RQ) was derived. The findings reveal a priority list of 38 compounds that exhibit potential environmental risks and merit consideration in future water quality monitoring programs. Furthermore, the majority of antibiotics in India (12 out of 17) and Pakistan (7 out of 17) exhibit a risk quotient for antimicrobial resistance selection (RQAMR) greater than 1, highlighting the need for devising effective strategies to mitigate the escalation of antibiotic resistance in the environment.


Subject(s)
Water Quality , Humans , Sri Lanka , Bangladesh , Pakistan , Risk Assessment , India
6.
Chemosphere ; 343: 140188, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37758080

ABSTRACT

The success of research in addressing a problem is heavily reliant on established methodologies and techniques from previous research findings. Therefore, precision and specificity are crucial to avoid drawing inaccurate conclusions. In this paper, we provide a critical commentary on a recently published research paper titled "Cost-effective remedial to microfiber pollution from wash effluent in Kolkata and Ranaghat" published in Chemosphere (DOI: https://doi.org/10.1016/j.chemosphere.2022.137548), which reports a study on microfiber pollution and its mitigation from drinking water and washing effluents in Kolkata and Ranaghat, India. Our comment focuses on the microfiber results reported by Mondal et al. (2023). Surprisingly, Mondal et al. (2023) reported microfibers in drinking water samples in higher concentration of microfibers (3000-5800 MFs/mL) compared to the washing effluents. This unusual variation in microfiber concentrations raises questions, especially considering the efficiency of conventional drinking water treatment plants in removing microfibers and exaggerated risk to public health. Based on our critical analysis of the methodology and data analysis reported by Mondal et al. (2023), we highlighted the significant errors and deficiencies present in the published article. These inaccuracies were due to inclusion of weight of suspended solids in the microfiber calculations. Our study highlighted the need of robust analytical methods for the quantification of microfibers in water sources.

7.
Sci Total Environ ; 886: 164027, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37169190

ABSTRACT

Microplastics (MPs) are one of the challenging and established contaminants that have adverse implications on human health. The focus of this study was to quantify and analyze the contribution of unscientific municipal solid waste (MSW) disposal sites to the MPs in the Jhelum River and the risk associated with it. Quantitative analysis of our study showed a mean MP concentration of 1474 ± 1026 particles/m3 for the entire stretch of the river. All the sites confirmed the presence of MPs with the concentration ranging from 600 particles/m3 to 2500 particles/m3. The size distribution of MPs suggested that 34 % of the microplastics ranged between 300 µm to 75 µm while 66 % of the particles varied between 300 µm to 5 mm. The concentrations of MPs downstream of unscientific disposal sites were found to increase threefold to that of upstream. The Fourier Transform Infrared Spectroscopy (FT-IR) confirmed the presence of polyethylene (PE) in the majority followed by polyvinyl chloride (PVC) and polypropylene (PP). The flakes were dominant throughout the river followed by filaments, fragments, and spherules. Count based Pollution level indexing (PLI) estimated 3-14 times MP contamination in the river with respect to contamination in glacial runoffs. The risk assessment study of the MPs indicated an increase of around 10.2 % in ingestion rates of MPs due to the unscientific disposal of MSW on the banks of the freshwater body. The values of polymer hazard index (PHI) and potential ecological risk index (PERI) were in the extreme case of pollution (PHI>1000 and PERI>1200). This study manifests the adversities of unscientific municipal solid waste disposal for timely waste management.


Subject(s)
Refuse Disposal , Water Pollutants, Chemical , Humans , Microplastics/analysis , Plastics/analysis , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Fresh Water/analysis , India
8.
Environ Monit Assess ; 194(8): 576, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35821153

ABSTRACT

Natural and anthropogenic pollution influence the general hydrochemistry of freshwater sources. Effective management strategies need an accurate evaluation of the water quality parameters, and inferences extracted from the data should be based on the most appropriate statistical methods. Conventional water quality indices (WQI) being related to a large number of water quality parameters results in significant variability and analytical costs. The focus of this study was to develop a remodeled water quality index (WQImin) based on the localized trends in water quality and demonstrate it to understand water quality variations of Dal Lake (a freshwater lake in the Himalayan region). Spatio-temporal changes and trends of 14 water quality parameters were investigated that were arbitrated from the samples collected at 11 sampling locations during the water quality monitoring across the Dal Lake from September 2017 to August 2020. The results signify that the general mean WQI value was 81.9, and seasonal average WQI values ranges from 79.44 to 84.55. The water quality showed seasonal variance, with lowest values in summer, succeeded by autumn and winter, and highest in spring. Moreover, the results from stepwise multiple regression analysis indicated that the WQImin significantly correlates with six water quality parameters (ammonia, dissolved oxygen, chemical oxygen demand, temperature, turbidity, and nitrate) in Dal Lake. The WQImin model predicted the water quality of the Dal Lake with a coefficient of determination (R2) value of 0.96, root mean square error (RMSE) value of 4.1, and percentage error (PE) of 5.3%. The developed WQImin model can be applied as a cost-effective and efficacious approach to determine the water quality of fresh surface water bodies.


Subject(s)
Lakes , Water Quality , Environmental Monitoring/methods , Nitrates , Seasons
9.
J Environ Manage ; 293: 112862, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34049159

ABSTRACT

To ensure the safe discharge of treated wastewater to the environment, continuous efforts are vital to enhance the modelling accuracy of wastewater treatment plants (WWTPs) through utilizing state-of-art techniques and algorithms. The integration of metaheuristic modern optimization algorithms that are natlurally inspired with the Fussy Inference Systems (FIS) to improve the modelling performance is a promising and mathematically suitable approach. This study integrates four population-based algorithms, namely: Particle swarm optimization (PSO), Genetic algorithm (GA), Hybrid GA-PSO, and Mutating invasive weed optimization (M-IWO) with FIS system. A full-scale WWTP in South Africa (SA) was selected to assess the validity of the proposed algorithms, where six wastewater effluent parameters were modeled, i.e., Alkalinity (ALK), Sulphate (SLP), Phosphate (PHS), Total Kjeldahl Nitrogen (TKN), Total Suspended Solids (TSS), and Chemical Oxygen Demand (COD). The results from this study showed that the hybrid PSO-GA algorithm outperforms the PSO and GA algorithms when used individually, in modelling all wastewater effluent parameters. PSO performed better for SLP and TKN compared to GA, while the M-IWO algorithm failed to provide an acceptable modelling convergence for all the studied parameters. However, three out of four algorithms applied in this study proven beneficial to be optimized in enhancing the modelling accuracy of wastewater quality parameters.


Subject(s)
Algorithms , Wastewater , Plant Weeds , South Africa
10.
Chemosphere ; 269: 128737, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33153841

ABSTRACT

The release of emerging contaminants (ECs) to the environment is a serious concern due to its health implications on humans, aquatic species, and the development of anti-microbial resistance. This review focuses on the critical analysis of available literature on the prevalence of ECs in the aquatic environment and their removal from wastewater treatment plants (WWTPs) in South Africa. Besides, a risk assessment is performed on the reported ECs from the South African surface water to augment the knowledge towards mitigation of EC pollution, and prioritisation of ECs to assist future monitoring plans and regulation framework. A zone wise classification approach was carried out to identify the spatial inferences and data deficiencies that revealed a non-uniformity in the monitoring of ECs throughout South Africa, with few zones rendering no data. The overarching data mining further revealed that unmanaged urine diverted toilets could be a potential source of EC pollution to groundwater in South Africa. Based on the available literature, it can be deduced that the complete adoption of EC management practices from developed countries might only contribute partly in the mitigation of EC pollution in South Africa. Therefore, an EC monitoring programme specific to the country is recommended which should be based on their occurrence levels, sources and removal in WWTPs.


Subject(s)
Groundwater , Water Pollutants, Chemical , Environmental Monitoring , Humans , South Africa , Wastewater/analysis , Water , Water Pollutants, Chemical/analysis
11.
Environ Pollut ; 265(Pt A): 115024, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32806406

ABSTRACT

Climate change will impact soil properties such as soil moisture, organic carbon and temperature and changes in these properties will influence the sorption, biodegradation and leaching of trace organic contaminants to groundwater. In this study, we conducted a modeling case study to evaluate atrazine and estrone transport in the subsurface under current and future climate conditions at a field site in central Nebraska. According to the modeling results, in the future, enhanced evapotranspiration and increased average air temperature may cause drier soil conditions, which consequently reduces the biodegradation of atrazine and estrone in the water phase. On the other hand, greater transpiration rates lead to greater root solute uptake which may decrease the concentration of atrazine and estrone in the soil profile. Another consequence of future climate is that the infiltration and leaching rates for both atrazine and estrone may be lower under future climate scenarios. Reduced infiltration of trace organic compounds may indicate that lower trace organic concentrations in groundwater may occur under future climate scenarios.


Subject(s)
Atrazine , Agriculture , Climate Change , Estrone , Nebraska
12.
Environ Sci Pollut Res Int ; 27(8): 7785-7794, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31889277

ABSTRACT

Due to their pervasive applications, phthalic acid esters or phthalates have ample presence in all environmental compartments. A principal source of their existence in freshwater is phthalate-laden wastewater treatment plant effluents. For its sustainable operation and biogas production, wastewater treatment scheme of up flow anaerobic sludge blanket (UASB) and polishing pond is more prevalent in developing countries. This yearlong study focused on evaluating the occurrence, fate and risk of four priority phthalates, diethyl phthalate (DEP), dibutyl phthalate (DBP), benzylbutyl phthalate (BBP), and diethylhexyl phthalate (DEHP) in a UASB+ polishing pond-based wastewater treatment plant. Concentration of the phthalates in raw wastewater ranged from nd to 17.36 µg/L (DEP), 0.92 to 18.26 µg/L (DBP), nd to 6.54 µg/L (BBP), and nd to 53.21 µg/L (DEHP). DEHP concentrations in UASB sludge were below 100 mg/kg, the recommended limit by the European Union for safe disposal of dewatered sludge. All four compounds were removed approximately 80% in the wastewater treatment plant, with larger removal in polishing pond than UASB. Sorption contributes a significant portion of BBP and DEHP removal (15-24%) in UASB than DEP and DBP (0-3%). Seasonally, larger removals of phthalates were observed during the summer season. Risk assessment showed that the treated effluents had low risk of DEP, DBP, and BBP. However, the hazard quotient (HQ) of DEHP was greater than 1. To comply with regulations, dilution requirement of effluents was investigated which showed that a dilution factor of 4.4 in summer and 2.1 in winter is required for effluents of UASB + Pond-based treatment plant.


Subject(s)
Endocrine Disruptors , Phthalic Acids/analysis , Wastewater/analysis , Endocrine Disruptors/analysis , Environmental Monitoring , Phthalic Acids/chemistry , Waste Disposal, Fluid
13.
Sci Total Environ ; 702: 134733, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31734609

ABSTRACT

To develop future wastewater treatment systems, focus is to improve/investigate existing biological wastewater treatment processes for the concurrent treatment of conventional pollution parameters (essentially nitrogen) and micro pollutants. Majority of the existing biological wastewater treatment systems were not designed for the removal of micro pollutants. This study focuses on understanding the role of treatment configuration for efficient removal of nitrogen and priority phthalic acid esters (PAEs) from real municipal wastewater in an integrated biofilm activated sludge (IBAS) system. The reactor was operated in two phases: Run I, without external carbon source in anoxic reactor and Run II, a nitrogen removal process, with partial diversion of untreated wastewater in anoxic reactor. Nitrogen removal was 70 ±â€¯12% in both operational phases, however, during Run I, removal of PAEs fluctuated with an average removal of 60-78%. Comparatively, removal of PAEs in Run II varied over a smaller range with average removal increased to 89-95%. In both operational scenarios, secondary oxic tank contributed maximum to the overall removal of PAEs in treatment system. Mass balance calculations showed significant contribution of biodegradation towards overall removal of PAEs which was enhanced by the supply of external carbon source. Kinetics and model output supported the PAEs removal performance observed in different reaction environments of IBAS process. A correlation between food to microorganism (F/M) ratio and PAEs removal showed increase in PAEs removal with decrease in F/M ratio. The study showed that treatment configuration and F/M ratio may be one of the guiding parameters for efficient removal of PAEs in biological wastewater treatment.


Subject(s)
Phthalic Acids , Waste Disposal, Fluid/methods , Water Pollutants, Chemical , Biodegradation, Environmental , Esters , Nitrogen , Sewage
14.
Chemosphere ; 234: 885-892, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31252360

ABSTRACT

Removal of emerging contaminants (ECs) is a serious concern in wastewater industry especially for public acceptance of reclaimed water. Diethylhexyl phthalate (DEHP) is one of the ubiquitous and detectable plasticizers in municipal wastewater across the globe. Water Framework Directive (2000/60/EC) has prioritized it for the establishment of discharge regulations. A cost-effective strategy, especially for developing nations, may be the re-engineering of the existing biological process for the simultaneous removal of ECs and conventional pollutants. Wastewater treatment plants are one of the main sources for DEHP occurrence in surface water. In this study, possible role of activated sludge process operational parameters in effective removal of DEHP was assessed. Principal component analysis of occurrence data showed dissimilarity with the organic and nutrient characteristics of sewage. DEHP concentration in more than half (55%) of treated wastewater samples was more than environmental quality standard value for inland and surface water bodies (1.3 µg/L). At a mixed liquor suspended solid (MLSS) concentration range of 3461-4972 mg/L, overall removal was 23.9 µg/gMLSS.d (92 ±â€¯6%) with biodegraded portion as 22.4 µg/gMLSS.d (85 ±â€¯4%) and sorbed portion of 1.5 µg/gMLSS.d (7 ±â€¯4%). DEHP removal showed an increasing trend at higher oxygen uptake rates (OUR) of sludge with DEHP removal of 8.1  µg DEHP/gMLSS.d (70 ±â€¯6%), in the OUR range of 20-28mgO2/L/h. Increase in overall removal of DEHP showed a positive correlation (r2 = 0.7) with increasing sludge retention time (SRT) and so does the decreasing food to microorganism (F/M) ratio with increasing removal of DEHP (r2 = 0.8). A temperature decrease of 13 °C caused a decrease of 30% in overall removal of DEHP.


Subject(s)
Diethylhexyl Phthalate/isolation & purification , Sewage/chemistry , Biodegradation, Environmental , Diethylhexyl Phthalate/analysis , Plasticizers/analysis , Plasticizers/isolation & purification , Wastewater/analysis , Water Purification
15.
Environ Sci Pollut Res Int ; 24(21): 17267-17284, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28567676

ABSTRACT

Phthalates are plasticizers and are concerned environmental endocrine-disrupting compounds. Due to their extensive usage in plastic manufacturing and personal care products as well as the potential to leach out from these products, phthalates have been detected in various aquatic environments including drinking water, groundwater, surface water, and wastewater. The primary source of their environmental occurrence is the discharge of phthalate-laden wastewater and sludge. This review focuses on recent knowledge on the occurrence of phthalate in different aquatic environments and their fate in conventional and advanced wastewater treatment processes. This review also summarizes recent advances in biological removal and degradation mechanisms of phthalates, identifies knowledge gaps, and suggests future research directions.


Subject(s)
Phthalic Acids , Wastewater , Waste Disposal, Fluid , Water Pollutants, Chemical
16.
Sci Total Environ ; 569-570: 661-671, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27380392

ABSTRACT

Phthalates are widely used in plastic and personnel care products. Being non-steroid endocrine disrupting compounds, their exposure have toxic effects on aquatic life and human health. The aim of this study was a comparative assessment of their fate and risk in full scale wastewater treatment along with influence of seasonal variations. Four priority phthalates, Diethylphthalate (DEP), Dibutylphthalate (DBP), Benzylbutyl phthalate (BBP) and Diethylhexyl phthalate (DEHP) were chosen for this study and wastewater treatment plants investigated were designed as nutrient removal based sequencing batch reactor (SBR), conventional activated sludge process (ASP) and up flow anaerobic sludge blanket (UASB) with polishing pond. Results showed that the main removal mechanism of phthalates was biotransformation with removal contribution of 74% in SBR, 65% in conventional ASP and 37% in UASB. Overall removal of phthalates was maximum in the treatment combination of UASB and pond (83%) followed by SBR (80%) and conventional ASP (74%). Seasonal influences on occurrence, removal and risk of these phthalates were also studied. The concentration of DEP, DBP and DEHP in untreated wastewater increased by 2, 7 and 2µg/L, respectively in summer. However in sludge, only large molecular weight phthalates BBP and DEHP increased in winter by 3mg/kg and 12mg/kg, respectively. Seasonal variations in removal of phthalates were discrepant in each process with better removal during summer. Risk assessment of phthalates to aquatic life showed that there is no potential risk of DEP, DBP and BBP from effluents of treatment plants however risk quotient of DEHP was in the range of 27-73 in both seasons which indicate probable risk to aquatic organisms. Phthalate risk to human beings estimated by daily intake of phthalates was in the range of 0.3±0.1 to 20±0.7ng/kg/d and far below their respective reference dosages, demonstrating the potential of these treatment plants to reduce the risk of phthalates.


Subject(s)
Developing Countries , Endocrine Disruptors/analysis , Phthalic Acids/analysis , Waste Disposal, Fluid/methods , Wastewater/analysis , Water Pollutants, Chemical/analysis , India , Risk Assessment , Seasons , Waste Disposal, Fluid/instrumentation
17.
Water Sci Technol ; 73(7): 1511-9, 2016.
Article in English | MEDLINE | ID: mdl-27054722

ABSTRACT

In this study, the effectiveness of polyvinyl alcohol (PVA) gel beads in treating domestic wastewater was investigated: a moving bed biofilm reactor (MBBR) configuration (oxic-anoxic and oxic) with 10% filling fraction of biomass carriers was operated in a continuously fed regime at temperatures of 25, 20, 15 and 6 °C with hydraulic retention times (HRTs) of 32 h, 18 h, 12 h and 9 h, respectively. Influent loadings were in the range of 0.22-1.22 kg N m(-3) d(-1) (total nitrogen (TN)), 1.48-7.82 kg chemical oxygen demand (COD) m(-3) d(-1) (organic) and 0.12-0.89 kg NH4(+)-N m(-3)d(-1) (ammonia nitrogen). MBBR performance resulted in the maximum TN removal rate of 1.22 kg N m(-3) d(-1) when the temperature and HRT were 6 °C and 9 h, respectively. The carbon removal rate at this temperature and HRT was 6.82 kg COD m(-3) d(-1). Ammonium removal rates ranged from 0.13 to 0.75 kg NH4(+)-N m(-3) d(-1) during the study. Total phosphorus and suspended solid removal efficiency ranged from 84 to 98% and 85 to 94% at an influent concentration of 3.3-7.1 mg/L and 74-356 mg/L, respectively. The sludge wasted from the MBBR exhibited light weight features characterized by sludge volume index value of 185 mL/g. Experimental data obtained can be useful in further developing the concept of PVA gel based wastewater treatment systems.


Subject(s)
Biofilms , Bioreactors , Carbon/metabolism , Nitrogen/metabolism , Polyvinyl Alcohol/chemistry , Ammonium Compounds , Bacteria/metabolism , Biological Oxygen Demand Analysis , Biomass , Carbon/chemistry , Nitrogen/chemistry , Phosphorus , Sewage/chemistry , Waste Disposal, Fluid/methods , Wastewater , Water Pollutants, Chemical
18.
Environ Sci Process Impacts ; 18(3): 406-16, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26923228

ABSTRACT

The contamination level of four phthalates in untreated and treated wastewater of fifteen wastewater treatment plants (WWTPs) and their fate in a full scale sequencing batch reactor (SBR) based WWTP was evaluated in this study. The four phthalates were diethyl phthalate (DEP), dibutyl phthalate (DBP), benzylbutyl phthalate (BBP) and diethylhexyl phthalate (DEHP). All compounds were present in untreated wastewater with DEHP being present in the highest mean concentration of 28.4 ± 5.3 µg L(-1). The concentration was in the range of 7.3 µg L(-1) (BBP) to 28.4 µg L(-1) (DEHP) in untreated wastewater and 1.3 µg L(-1) (DBP) to 2.6 µg L(-1) (DEHP) in treated wastewater. The nutrient removal process and advance tertiary treatment based WWTPs showed the highest phthalate removal efficiencies of 87% and 93%, respectively. The correlation between phthalate removal and conventional performance of WWTPs was positive. Fate analysis of these phthalates in a SBR based WWTP showed that total removal of the sum of phthalates in a primary settling tank and SBR was 84% out of which 55% is removed by biodegradation and 29% was removed by sorption to primary and secondary sludge. The percentage removal of four phthalates in primary settling tanks was 18%. Comparison of the diluted effluent DEHP concentration with its environmental quality standards showed that the dilution in an effluent receiving water body can reduce the DEHP emissions to acceptable values.


Subject(s)
Phthalic Acids/analysis , Water Pollutants, Chemical/analysis , Adsorption , Biodegradation, Environmental , Bioreactors , Environmental Monitoring , India , Phthalic Acids/chemistry , Phthalic Acids/metabolism , Sewage/chemistry , Waste Disposal, Fluid , Wastewater/analysis , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...