Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Pathog ; 175: 105992, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36649779

ABSTRACT

Infections due to Acinetobacter baumannii (A. baumannii) are rapidly increasing worldwide and consequently therapeutic options for treatment are limited. The emergence of multi drug resistant (MDR) strains has rendered available antibiotics ineffective, necessitating the urgent discovery of new drugs and drug targets. The vitamin B6 biosynthetic pathway has been considered as a potential antibacterial drug target but it is as yet uncharacterized for A. baumannii. In the current work, we have carried out in silico and biochemical characterization of Erythrose-4-phosphate dehydrogenase (E4PDH) (EC 1.2.1.72). This enzyme catalyzes the first step in the deoxyxylulose-5-phosphate (DXP) dependent Vitamin B6 biosynthetic pathway i.e. the conversion of d-erythrose-4-phosphate (E4P) to 4-Phosphoerythronate. E4PDH also possesses an additional activity whereby it can catalyze the conversion of Glyceraldehyde-3-phosphate (G3P) to 1,3 bisphosphoglycerate (1,3BPG). Our studies have revealed that this enzyme exhibits an alternate moonlighting function as a cell surface receptor for the human iron transport proteins transferrin (Tf) and lactoferrin (Lf). The present work reports the internalization of Tf and consequent iron acquisition as an alternate strategy for iron acquisition. Given its essential role in two crucial pathways i.e. metabolism and iron acquisition, A. baumannii E4PDH may play a vital role in bacterial pathogenesis.


Subject(s)
Acinetobacter baumannii , Humans , Anti-Bacterial Agents/pharmacology , Iron/metabolism , Vitamin B 6 , Oxidoreductases , Phosphates/pharmacology , Drug Resistance, Multiple, Bacterial
2.
Cell Microbiol ; 23(5): e13311, 2021 05.
Article in English | MEDLINE | ID: mdl-33486886

ABSTRACT

The spread of infection is directly determined by the ability of a pathogen to invade and infect host tissues. The process involves adherence due to host-pathogen interactions and traversal into deeper tissues. Mycobacterium tuberculosis (Mtb) primarily infects the lung but is unique in its ability to infect almost any other organ of the human host including immune privileged sites such as the central nervous system (CNS). The extreme invasiveness of this bacterium is not fully understood. In the current study, we report that cell surface Mtb glyceraldehyde-3-phosphate dehydrogenase (GAPDH) functions as a virulence factor by multiple mechanisms. Firstly, it serves as a dual receptor for both plasminogen (Plg) and plasmin (Plm). CRISPRi-mediated silencing of this essential enzyme confirmed its role in the recruitment of Plg/Plm. Our studies further demonstrate that soluble GAPDH can re-associate on Mtb bacilli to promote plasmin(ogen) recruitment. The direct association of plasmin(ogen) via cell surface GAPDH or by the re-association of soluble GAPDH enhanced bacterial adherence to and traversal across lung epithelial cells. Furthermore, the association of GAPDH with host extracellular matrix (ECM) proteins coupled with its ability to recruit plasmin(ogen) may endow cells with the ability of directed proteolytic activity vital for tissue invasion.


Subject(s)
Adhesins, Bacterial/metabolism , Fibrinolysin/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/pathogenicity , Plasminogen/metabolism , Virulence Factors/metabolism , A549 Cells , Adhesins, Bacterial/genetics , Bacterial Adhesion , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Humans , Protein Binding , Virulence , Virulence Factors/genetics
3.
J Antimicrob Chemother ; 74(4): 912-920, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30689890

ABSTRACT

BACKGROUND: The emergence of drug-resistant bacteria is a major hurdle for effective treatment of infections caused by Mycobacterium tuberculosis and ESKAPE pathogens. In comparison with conventional drug discovery, drug repurposing offers an effective yet rapid approach to identifying novel antibiotics. METHODS: Ethyl bromopyruvate was evaluated for its ability to inhibit M. tuberculosis and ESKAPE pathogens using growth inhibition assays. The selectivity index of ethyl bromopyruvate was determined, followed by time-kill kinetics against M. tuberculosis and Staphylococcus aureus. We first tested its ability to synergize with approved drugs and then tested its ability to decimate bacterial biofilm. Intracellular killing of M. tuberculosis was determined and in vivo potential was determined in a neutropenic murine model of S. aureus infection. RESULTS: We identified ethyl bromopyruvate as an equipotent broad-spectrum antibacterial agent targeting drug-susceptible and -resistant M. tuberculosis and ESKAPE pathogens. Ethyl bromopyruvate exhibited concentration-dependent bactericidal activity. In M. tuberculosis, ethyl bromopyruvate inhibited GAPDH with a concomitant reduction in ATP levels and transferrin-mediated iron uptake. Apart from GAPDH, this compound inhibited pyruvate kinase, isocitrate lyase and malate synthase to varying extents. Ethyl bromopyruvate did not negatively interact with any drug and significantly reduced biofilm at a 64-fold lower concentration than vancomycin. When tested in an S. aureus neutropenic thigh infection model, ethyl bromopyruvate exhibited efficacy equal to that of vancomycin in reducing bacterial counts in thigh, and at 1/25th of the dosage. CONCLUSIONS: Ethyl bromopyruvate exhibits all the characteristics required to be positioned as a potential broad-spectrum antibacterial agent.


Subject(s)
Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Microbial Viability/drug effects , Mycobacterium tuberculosis/drug effects , Pyruvates/pharmacology , Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/administration & dosage , Disease Models, Animal , Drug Repositioning , Enzyme Inhibitors/administration & dosage , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/antagonists & inhibitors , Mice, Inbred BALB C , Pyruvates/administration & dosage , Staphylococcal Infections/drug therapy , Transferrin/antagonists & inhibitors , Treatment Outcome
4.
Article in English | MEDLINE | ID: mdl-28642848

ABSTRACT

Iron is crucial for the survival of living cells, particularly the human pathogen Mycobacterium tuberculosis (M.tb) which uses multiple strategies to acquire and store iron. M.tb synthesizes high affinity iron chelators (siderophores), these extract iron from host iron carrier proteins such as transferrin (Tf) and lactoferrin (Lf). Recent studies have revealed that M.tb may also relocate several housekeeping proteins to the cell surface for capture and internalization of host iron carrier protein transferrin. One of the identified receptors is the glycolytic enzyme Glyceraldehyde-3-phosphate dehydrogenase (GAPDH). This conserved multifunctional protein has been identified as a virulence factor in several other bacterial species. Considering the close structural and functional homology between the two major human iron carrier proteins (Tf and Lf) and the fact that Lf is abundantly present in lung fluid (unlike Tf which is present in plasma), we evaluated whether GAPDH also functions as a dual receptor for Lf. The current study demonstrates that human Lf is sequestered at the bacterial surface by GAPDH. The affinity of Lf-GAPDH (31.7 ± 1.68 nM) is higher as compared to Tf-GAPDH (160 ± 24 nM). Two GAPDH mutants were analyzed for their enzymatic activity and interaction with Lf. Lastly, the present computational studies offer the first significant insights for the 3D structure of monomers and assembled tetramer with the associated co-factor NAD+. Sequence analysis and structural modeling identified the surface exposed, evolutionarily conserved and functional residues and predicted the effect of mutagenesis on GAPDH.


Subject(s)
Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Lactoferrin/metabolism , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/metabolism , Binding Sites , Cell Line , Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Humans , Iron/metabolism , Lung , Models, Molecular , Mutation , Mycobacterium tuberculosis/cytology , Protein Conformation , Sequence Analysis , THP-1 Cells , Transferrin/metabolism , Virulence Factors
5.
Protein Expr Purif ; 127: 22-27, 2016 11.
Article in English | MEDLINE | ID: mdl-27389468

ABSTRACT

Glyceraldehyde-3-phosphate dehydrogenase [GAPDH, NAD + oxidoreductase (phosphorylating) 1.2.1.12] catalyzes the conversion of glyceraldehyde-3-phosphate to 1,3-bisphosphoglycerate coupled with the reduction of NAD(+) to NADH. In addition to its role in glycolysis, this enzyme has numerous alternate functions, in both prokaryotes and eukaryotes. In plants, additional functions have been reported from multiple species including Pisum sativum. A recent study has identified that GAPDH may play an important role in seed ageing and programmed cell death. Despite this the existing purification protocols are almost 40 years old, and only partial characterization of the enzyme has been reported. In the current study, we report a modified method for purification of enzymatically active pea seed GAPDH along with the characterization of the enzyme. Using 2D gel electrophoresis our study also demonstrates that pea seeds contain four isoforms of NAD(+) dependent GAPDH.


Subject(s)
Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry , Glyceraldehyde-3-Phosphate Dehydrogenases/isolation & purification , Pisum sativum/enzymology , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Animals , Chickens , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...