Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med Inform Decis Mak ; 24(1): 160, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849815

ABSTRACT

PURPOSE: Liver disease causes two million deaths annually, accounting for 4% of all deaths globally. Prediction or early detection of the disease via machine learning algorithms on large clinical data have become promising and potentially powerful, but such methods often have some limitations due to the complexity of the data. In this regard, ensemble learning has shown promising results. There is an urgent need to evaluate different algorithms and then suggest a robust ensemble algorithm in liver disease prediction. METHOD: Three ensemble approaches with nine algorithms are evaluated on a large dataset of liver patients comprising 30,691 samples with 11 features. Various preprocessing procedures are utilized to feed the proposed model with better quality data, in addition to the appropriate tuning of hyperparameters and selection of features. RESULTS: The models' performances with each algorithm are extensively evaluated with several positive and negative performance metrics along with runtime. Gradient boosting is found to have the overall best performance with 98.80% accuracy and 98.50% precision, recall and F1-score for each. CONCLUSIONS: The proposed model with gradient boosting bettered in most metrics compared with several recent similar works, suggesting its efficacy in predicting liver disease. It can be further applied to predict other diseases with the commonality of predicate indicators.


Subject(s)
Liver Diseases , Machine Learning , Humans , Algorithms
3.
BMC Med Imaging ; 24(1): 120, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789925

ABSTRACT

BACKGROUND: Lung cancer is the second most common cancer worldwide, with over two million new cases per year. Early identification would allow healthcare practitioners to handle it more effectively. The advancement of computer-aided detection systems significantly impacted clinical analysis and decision-making on human disease. Towards this, machine learning and deep learning techniques are successfully being applied. Due to several advantages, transfer learning has become popular for disease detection based on image data. METHODS: In this work, we build a novel transfer learning model (VER-Net) by stacking three different transfer learning models to detect lung cancer using lung CT scan images. The model is trained to map the CT scan images with four lung cancer classes. Various measures, such as image preprocessing, data augmentation, and hyperparameter tuning, are taken to improve the efficacy of VER-Net. All the models are trained and evaluated using multiclass classifications chest CT images. RESULTS: The experimental results confirm that VER-Net outperformed the other eight transfer learning models compared with. VER-Net scored 91%, 92%, 91%, and 91.3% when tested for accuracy, precision, recall, and F1-score, respectively. Compared to the state-of-the-art, VER-Net has better accuracy. CONCLUSION: VER-Net is not only effectively used for lung cancer detection but may also be useful for other diseases for which CT scan images are available.


Subject(s)
Lung Neoplasms , Tomography, X-Ray Computed , Humans , Lung Neoplasms/diagnostic imaging , Tomography, X-Ray Computed/methods , Machine Learning , Deep Learning , Radiographic Image Interpretation, Computer-Assisted/methods
4.
PLoS One ; 18(12): e0295234, 2023.
Article in English | MEDLINE | ID: mdl-38039306

ABSTRACT

Chronic kidney disease (CKD) has become a major global health crisis, causing millions of yearly deaths. Predicting the possibility of a person being affected by the disease will allow timely diagnosis and precautionary measures leading to preventive strategies for health. Machine learning techniques have been popularly applied in various disease diagnoses and predictions. Ensemble learning approaches have become useful for predicting many complex diseases. In this paper, we utilise the boosting method, one of the popular ensemble learnings, to achieve a higher prediction accuracy for CKD. Five boosting algorithms are employed: XGBoost, CatBoost, LightGBM, AdaBoost, and gradient boosting. We experimented with the CKD data set from the UCI machine learning repository. Various preprocessing steps are employed to achieve better prediction performance, along with suitable hyperparameter tuning and feature selection. We assessed the degree of importance of each feature in the dataset leading to CKD. The performance of each model was evaluated with accuracy, precision, recall, F1-score, Area under the curve-receiving operator characteristic (AUC-ROC), and runtime. AdaBoost was found to have the overall best performance among the five algorithms, scoring the highest in almost all the performance measures. It attained 100% and 98.47% accuracy for training and testing sets. This model also exhibited better precision, recall, and AUC-ROC curve performance.


Subject(s)
Algorithms , Renal Insufficiency, Chronic , Humans , Area Under Curve , Machine Learning , Mental Recall , Renal Insufficiency, Chronic/diagnosis
5.
Front Genet ; 14: 1252159, 2023.
Article in English | MEDLINE | ID: mdl-37953921

ABSTRACT

Introduction: Diabetes is considered one of the leading healthcare concerns affecting millions worldwide. Taking appropriate action at the earliest stages of the disease depends on early diabetes prediction and identification. To support healthcare providers for better diagnosis and prognosis of diseases, machine learning has been explored in the healthcare industry in recent years. Methods: To predict diabetes, this research has conducted experiments on five boosting algorithms on the Pima diabetes dataset. The dataset was obtained from the University of California, Irvine (UCI) machine learning repository, which contains several important clinical features. Exploratory data analysis was used to identify the characteristics of the dataset. Moreover, upsampling, normalisation, feature selection, and hyperparameter tuning were employed for predictive analytics. Results: The results were analysed using various statistical/machine learning metrics and k-fold cross-validation techniques. Gradient boosting achieved the greatest accuracy rate of 92.85% among all the classifiers. Precision, recall, f1-score, and receiver operating characteristic (ROC) curves were used to further validate the model. Discussion: The suggested model outperformed the current studies in terms of prediction accuracy, demonstrating its applicability to other diseases with similar predicate indications.

6.
Diagnostics (Basel) ; 13(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36766640

ABSTRACT

Malaria is predominant in many subtropical nations with little health-monitoring infrastructure. To forecast malaria and condense the disease's impact on the population, time series prediction models are necessary. The conventional technique of detecting malaria disease is for certified technicians to examine blood smears visually for parasite-infected RBC (red blood cells) underneath a microscope. This procedure is ineffective, and the diagnosis depends on the individual performing the test and his/her experience. Automatic image identification systems based on machine learning have previously been used to diagnose malaria blood smears. However, so far, the practical performance has been insufficient. In this paper, we have made a performance analysis of deep learning algorithms in the diagnosis of malaria disease. We have used Neural Network models like CNN, MobileNetV2, and ResNet50 to perform this analysis. The dataset was extracted from the National Institutes of Health (NIH) website and consisted of 27,558 photos, including 13,780 parasitized cell images and 13,778 uninfected cell images. In conclusion, the MobileNetV2 model outperformed by achieving an accuracy rate of 97.06% for better disease detection. Also, other metrics like training and testing loss, precision, recall, fi-score, and ROC curve were calculated to validate the considered models.

7.
J Diabetes Metab Disord ; 21(1): 339-352, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35673418

ABSTRACT

Objective: Diabetes is a chronic fatal disease that has affected millions of people all over the globe. Type 2 Diabetes Mellitus (T2DM) accounts for 90% of the affected population among all types of diabetes. Millions of T2DM patients remain undiagnosed due to lack of awareness and under resourced healthcare system. So, there is a dire need for a diagnostic and prognostic tool that shall help the healthcare providers, clinicians and practitioners with early prediction and hence can recommend the lifestyle changes required to stop the progression of diabetes. The main objective of this research is to develop a framework based on machine learning techniques using only lifestyle indicators for prediction of T2DM disease. Moreover, prediction model can be used without visiting clinical labs and hospital readmissions. Method: A proposed framework is presented and implemented based on machine learning paradigms using lifestyle indicators for better prediction of T2DM disease. The current research has involved different experts like Diabetologists, Endocrinologists, Dieticians, Nutritionists, etc. for selecting the contributing 1552 instances and 11 attributes lifestyle biological features to promote health and manage complications towards T2DM disease. The dataset has been collected through survey and google forms from different geographical regions. Results: Seven machine learning classifiers were employed namely K-Nearest Neighbour (KNN), Linear Regression (LR), Support Vector Machine (SVM), Naive Bayes (NB), Decision Tree (DT), Random Forest (RF) and Gradient Boosting (GB). Gradient Boosting classifier outperformed best with an accuracy rate of 97.24% for training and 96.90% for testing separately followed by RF, DT, NB, SVM, LR, and KNN as 95.36%, 92.52%, 90.72%, 90.20%, 90.20% and 77.06% respectively. However, in terms of precision, RF achieved high performance (0.980%) and KNN performed the lowest (0.793%). As far as recall is being concerned, GB achieved the highest rate of 0.975% and KNN showed the worst rate of 0.774%. Also, GB is top performed in terms of f1-score. According to the ROCs, GB and NB had a better area under the curve compared to the others. Conclusion: The research developed a realistic health management system for T2DM disease based on machine learning techniques using only lifestyle data for prediction of T2DM. To extend the current study, these models shall be used for different, large and real-time datasets which share the commonality of data with T2DM disease to establish the efficacy of the proposed system.

SELECTION OF CITATIONS
SEARCH DETAIL
...