Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cell ; 34(4): 387-99, 2015 Aug 24.
Article in English | MEDLINE | ID: mdl-26256209

ABSTRACT

Some organisms, such as adult zebrafish and newborn mice, have the capacity to regenerate heart tissue following injury. Unraveling the mechanisms of heart regeneration is fundamental to understanding why regeneration fails in adult humans. Numerous studies have revealed that nerves are crucial for organ regeneration, thus we aimed to determine whether nerves guide heart regeneration. Here, we show using transgenic zebrafish that inhibition of cardiac innervation leads to reduction of myocyte proliferation following injury. Specifically, pharmacological inhibition of cholinergic nerve function reduces cardiomyocyte proliferation in the injured hearts of both zebrafish and neonatal mice. Direct mechanical denervation impairs heart regeneration in neonatal mice, which was rescued by the administration of neuregulin 1 (NRG1) and nerve growth factor (NGF) recombinant proteins. Transcriptional analysis of mechanically denervated hearts revealed a blunted inflammatory and immune response following injury. These findings demonstrate that nerve function is required for both zebrafish and mouse heart regeneration.


Subject(s)
Cholinergic Neurons/physiology , Heart/innervation , Heart/physiology , Myocytes, Cardiac/cytology , Regeneration , Animals , Animals, Genetically Modified , Animals, Newborn , Cell Proliferation/drug effects , Denervation , Gene Expression Regulation/drug effects , Immunity/drug effects , Immunity/genetics , Inflammation/genetics , Mice , Models, Biological , Molecular Sequence Data , Nerve Growth Factor/pharmacology , Neuregulin-1/pharmacology , Regeneration/drug effects , Synaptic Transmission/drug effects , Vagotomy , Zebrafish
2.
Circ Res ; 116(5): 804-15, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25477501

ABSTRACT

RATIONALE: Neonatal mice have the capacity to regenerate their hearts in response to injury, but this potential is lost after the first week of life. The transcriptional changes that underpin mammalian cardiac regeneration have not been fully characterized at the molecular level. OBJECTIVE: The objectives of our study were to determine whether myocytes revert the transcriptional phenotype to a less differentiated state during regeneration and to systematically interrogate the transcriptional data to identify and validate potential regulators of this process. METHODS AND RESULTS: We derived a core transcriptional signature of injury-induced cardiac myocyte (CM) regeneration in mouse by comparing global transcriptional programs in a dynamic model of in vitro and in vivo CM differentiation, in vitro CM explant model, as well as a neonatal heart resection model. The regenerating mouse heart revealed a transcriptional reversion of CM differentiation processes, including reactivation of latent developmental programs similar to those observed during destabilization of a mature CM phenotype in the explant model. We identified potential upstream regulators of the core network, including interleukin 13, which induced CM cell cycle entry and STAT6/STAT3 signaling in vitro. We demonstrate that STAT3/periostin and STAT6 signaling are critical mediators of interleukin 13 signaling in CMs. These downstream signaling molecules are also modulated in the regenerating mouse heart. CONCLUSIONS: Our work reveals new insights into the transcriptional regulation of mammalian cardiac regeneration and provides the founding circuitry for identifying potential regulators for stimulating heart regeneration.


Subject(s)
Myocytes, Cardiac/metabolism , Regeneration/physiology , Transcription, Genetic , Animals , Animals, Newborn , Cell Adhesion Molecules/physiology , Cell Cycle , Cell Dedifferentiation/genetics , Cell Differentiation , Cells, Cultured , Culture Media, Serum-Free , DNA Replication , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Heart Ventricles/cytology , Interleukin-13/pharmacology , Interleukin-13/physiology , Interleukin-13 Receptor alpha1 Subunit/antagonists & inhibitors , Interleukin-13 Receptor alpha1 Subunit/genetics , Interleukin-4 Receptor alpha Subunit/antagonists & inhibitors , Interleukin-4 Receptor alpha Subunit/genetics , Mice , Muscle Development , Myocytes, Cardiac/drug effects , RNA Interference , RNA, Small Interfering/pharmacology , Rats , Rats, Sprague-Dawley , STAT3 Transcription Factor/physiology , STAT6 Transcription Factor/physiology , Sequence Alignment , Transcription Factors/physiology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...