Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Article in English | MEDLINE | ID: mdl-38934117

ABSTRACT

BACKGROUND: Despite being in an oxygen-rich environment, endothelial cells (ECs) use anaerobic glycolysis (Warburg effect) as the primary metabolic pathway for cellular energy needs. PFKFB (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase)-3 regulates a critical enzymatic checkpoint in glycolysis and has been shown to induce angiogenesis. This study builds on our efforts to determine the metabolic regulation of ischemic angiogenesis and perfusion recovery in the ischemic muscle. METHODS: Hypoxia serum starvation (HSS) was used as an in vitro peripheral artery disease (PAD) model, and hind limb ischemia by femoral artery ligation and resection was used as a preclinical PAD model. RESULTS: Despite increasing PFKFB3-dependent glycolysis, HSS significantly decreased the angiogenic capacity of ischemic ECs. Interestingly, inhibiting PFKFB3 significantly induced the angiogenic capacity of HSS-ECs. Since ischemia induced a significant in PFKFB3 levels in hind limb ischemia muscle versus nonischemic, we wanted to determine whether glucose bioavailability (rather than PFKFB3 expression) in the ischemic muscle is a limiting factor behind impaired angiogenesis. However, treating the ischemic muscle with intramuscular delivery of D-glucose or L-glucose (osmolar control) showed no significant differences in the perfusion recovery, indicating that glucose bioavailability is not a limiting factor to induce ischemic angiogenesis in experimental PAD. Unexpectedly, we found that shRNA-mediated PFKFB3 inhibition in the ischemic muscle resulted in a numerical increase in perfusion recovery and significantly higher vascular density compared with control shRNA (consistent with the increased angiogenic capacity of PFKFB3 silenced HSS-ECs). Based on these data, we hypothesized that inhibiting HSS-induced PFKFB3 in ischemic ECs activates alternative metabolic pathways that revascularize the ischemic muscle in experimental PAD. A comprehensive glucose metabolic gene qPCR arrays in PFKFB3 silenced HSS-ECs, and PFKFB3-inhibited ischemic muscle versus respective controls identified UGP2 (uridine diphosphate-glucose pyrophosphorylase 2), a regulator of protein glycosylation and glycogen synthesis, is induced upon PFKFB3 inhibition in vitro and in vivo. Antibody-mediated inhibition of UGP2 in the ischemic muscle significantly impaired perfusion recovery versus IgG control. Mechanistically, supplementing uridine diphosphate-glucose, a metabolite of UGP2 activity, significantly induced HSS-EC angiogenic capacity in vitro and enhanced perfusion recovery in vivo by increasing protein glycosylation (but not glycogen synthesis). CONCLUSIONS: Our data present that inhibition of maladaptive PFKFB3-driven glycolysis in HSS-ECs is necessary to promote the UGP2-uridine diphosphate-glucose axis that enhances ischemic angiogenesis and perfusion recovery in experimental PAD.

2.
Commun Med (Lond) ; 4(1): 3, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38182796

ABSTRACT

BACKGROUND: VEGF165a increases the expression of the microRNA-17-92 cluster, promoting developmental, retinal, and tumor angiogenesis. We have previously shown that VEGF165b, an alternatively spliced anti-angiogenic VEGF-A isoform, inhibits the VEGFR-STAT3 pathway in ischemic endothelial cells (ECs) to decrease their angiogenic capacity. In ischemic macrophages (Møs), VEGF165b inhibits VEGFR1 to induce S100A8/A9 expression, which drives M1-like polarization. Our current study aims to determine whether VEGF165b inhibition promotes perfusion recovery by regulating the microRNA(miR)-17-92 cluster in preclinical PAD. METHODS: Femoral artery ligation and resection was used as a preclinical PAD model. Hypoxia serum starvation (HSS) was used as an in vitro PAD model. VEGF165b was inhibited/neutralized by an isoform-specific VEGF165b antibody. RESULTS: Here, we show that VEGF165b-inhibition induces the expression of miR-17-20a (within miR-17-92 (miR-17-18a-19a-19b-20a-92) cluster) in HSS-ECs and HSS-Møs vs. respective normal and/or isotype-matched IgG controls to enhance perfusion recovery. Consistent with the bioinformatics analysis that revealed RCAN3 as a common target of miR-17 and miR-20a, Argonaute-2 pull-down assays showed decreased miR-17-20a expression and higher RCAN3 expression in the RNA-induced silencing complex of HSS-ECs and HSS-Møs vs. respective controls. Inhibiting miR-17-20a induced RCAN3 levels to decrease ischemic angiogenesis and promoted M1-like polarization to impair perfusion recovery. Finally, using STAT3 inhibitors, S100A8/A9 silencers, and VEGFR1-deficient ECs and Møs, we show that VEGF165b-inhibition activates the miR-17-20a-RCAN3 pathway independent of VEGFR1-STAT3 or VEGFR1-S100A8/A9 in ischemic-ECs and ischemic-Møs respectively. CONCLUSIONS: Our data revealed a hereunto unrecognized therapeutic 'miR-17-20a-RCAN3' pathway in the ischemic vasculature that is VEGFR1-STAT3/S100A8/A9 independent and is activated only upon VEGF165b-inhibition in PAD.


Therapies that can grow new blood vessels in the ischemic muscle are necessary to restore blood flow and provide relief to patients with peripheral artery disease (PAD). We have previously shown that blocking VEGF165b, a small protein involved in the regulation of regenerating blood vessels, promotes the growth of new blood vessels in the ischemic muscle. However, the mechanism by which this occurs is not clear. Here, we build on this existing knowledge and show the complex processes driving the growth of new blood vessels, which will help to supply blood to the ischemic muscle and provide therapeutic relief from PAD.

4.
bioRxiv ; 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37961122

ABSTRACT

In the preclinical model of peripheral arterial disease (PAD), M2-like anti-inflammatory macrophage polarization and angiogenesis are required for revascularization. The regulation of cell metabolism and inflammation in macrophages is tightly linked to mitochondrial dynamics. Drp1, a mitochondrial fission protein, has shown context-dependent macrophage phenotypes with both pro- and anti-inflammatory characteristics. However, the role of macrophage Drp1 in reparative neovascularization remains unexplored. Here we show that Drp1 expression was significantly increased in F4/80+ macrophages within ischemic muscle at day 3 following hindlimb ischemia (HLI), an animal model of PAD. Myeloid-specific Drp1 -/- mice exhibited reduced limb perfusion recovery, angiogenesis and muscle regeneration after HLI. These effects were concomitant with enhancement of pro-inflammatory M1-like macrophages, p-NFkB, and TNFα levels, while showing reduction in anti-inflammatory M2-like macrophages and p-AMPK in ischemic muscle of myeloid Drp1 -/- mice. In vitro, Drp1 -/- macrophages under hypoxia serum starvation (HSS), an in vitro PAD model, demonstrated enhanced glycolysis via reducing p-AMPK as well as mitochondrial dysfunction and excessive mitochondrial ROS, resulting in increased M1-gene and reduced M2-gene expression. Conditioned media from HSS-treated Drp1 -/- macrophages exhibited increased secretion of pro-inflammatory cytokines and suppressed angiogenic responses in cultured endothelial cells. Thus, Drp1 deficiency in macrophages under ischemia drives inflammatory metabolic reprogramming and macrophage polarization, thereby limiting revascularization in experimental PAD.

5.
J Am Heart Assoc ; 12(7): e027986, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36974760

ABSTRACT

Background In endothelial cells (ECs), glycolysis, regulated by PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase, isoform-3), is the major metabolic pathway for ATP generation. In preclinical peripheral artery disease models, VEGF165a (vascular endothelial growth factor165a) and microRNA-93 both promote angiogenesis. Methods and Results Mice following hind-limb ischemia (HLI) and ECs with, and without, hypoxia and serum starvation were examined with, and without, microRNA-93 and VEGF165a. Post-HLI perfusion recovery was monitored. EC metabolism was studied using seahorse assay, and the expression and activity of major metabolism genes were assessed. Reactive oxygen species levels and EC permeability were evaluated. C57Bl/6J mice generated a robust angiogenic response to HLI, with ECs from ischemic versus nonischemic muscle demonstrating no increase in glycolysis. Balb/CJ mice generated a poor angiogenic response post-HLI; ischemic versus nonischemic ECs demonstrated significant increase in glycolysis. MicroRNA-93-treated Balb/CJ mice post-HLI showed better perfusion recovery, with ischemic versus nonischemic ECs showing no increase in glycolysis. VEGF165a-treated Balb/CJ mice post-HLI showed no improvement in perfusion recovery with ischemic versus nonischemic ECs showing significant increase in glycolysis. ECs under hypoxia and serum starvation upregulated PFKFB3. In ECs under hypoxia and serum starvation, VEGF165a versus control significantly upregulated PFKFB3 and glycolysis, whereas miR-93 versus control demonstrated no increase in PFKFB3 or glycolysis. MicroRNA-93 versus VEGF165a upregulated glucose-6-phosphate dehydrogenase expression and activity, activating the pentose phosphate pathway. MicroRNA-93 versus control increased reduced nicotinamide adenine dinucleotide phosphate and virtually eliminated the increase in reactive oxygen species. In ECs under hypoxia and serum starvation, VEGF165a significantly increased and miR-93 decreased EC permeability. Conclusions In peripheral artery disease, activation of the pentose phosphate pathway to promote angiogenesis may offer potential therapeutic advantages.


Subject(s)
MicroRNAs , Peripheral Arterial Disease , Mice , Animals , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Reactive Oxygen Species/metabolism , Peripheral Arterial Disease/metabolism , Hypoxia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Glycolysis/physiology , Ischemia/genetics
6.
Cells ; 11(17)2022 08 28.
Article in English | MEDLINE | ID: mdl-36078086

ABSTRACT

Nitric oxide (NO) is the critical regulator of VEGFR2-induced angiogenesis. Neither VEGF-A over-expression nor L-Arginine (NO-precursor) supplementation has been effective in helping patients with Peripheral Artery Disease (PAD) in clinical trials. One incompletely studied reason may be due to the presence of the less characterized anti-angiogenic VEGF-A (VEGF165b) isoform. We have recently shown that VEGF165b inhibits ischemic angiogenesis by blocking VEGFR1, not VEGFR2 activation. Here we wanted to determine whether VEGF165b inhibition using a monoclonal isoform-specific antibody against VEGF165b vs. control, improved perfusion recovery in preclinical PAD models that have impaired VEGFR2-NO signaling, including (1) type-2 diabetic model, (2) endothelial Nitric oxide synthase-knock out mice, and (3) Myoglobin transgenic mice that have impaired NO bioavailability. In all PAD models, VEGF165b inhibition vs. control enhanced perfusion recovery, increased microvascular density in the ischemic limb, and activated VEGFR1-STAT3 signaling. In vitro, VEGF165b inhibition vs. control enhanced a VEGFR1-dependent endothelial survival/proliferation and angiogenic capacity. These data demonstrate that VEGF165b inhibition induces VEGFR1-STAT3 activation, which does not require increased NO to induce therapeutic angiogenesis in PAD. These results may have implications for advancing therapies for patients with PAD where the VEGFR2-eNOS-NO pathway is impaired.


Subject(s)
Peripheral Arterial Disease , Vascular Endothelial Growth Factor A , Animals , Ischemia/drug therapy , Mice , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Neovascularization, Physiologic/drug effects , Nitric Oxide , Peripheral Arterial Disease/drug therapy , Peripheral Arterial Disease/metabolism , Protein Isoforms/metabolism , Vascular Endothelial Growth Factor A/metabolism
7.
Arterioscler Thromb Vasc Biol ; 42(1): 6-18, 2022 01.
Article in English | MEDLINE | ID: mdl-34809449

ABSTRACT

OBJECTIVE: Neovascularization can maintain and even improve tissue perfusion in the setting of limb ischemia during peripheral artery disease. The molecular and cellular mechanisms mediating this process are incompletely understood. We investigate the potential role(s) for Id3 (inhibitor of differentiation 3) in regulating blood flow in a murine model of hindlimb ischemia (HLI). Approach and Results: HLI was modeled through femoral artery ligation and resection and blood flow recovery was quantified by laser Doppler perfusion imaging. Mice with global Id3 deletion had significantly impaired perfusion recovery at 14 and 21 days of HLI. Endothelial- or myeloid cell-specific deletion of Id3 revealed no effect on perfusion recovery while B-cell-specific knockout of Id3 (Id3BKO) revealed a significant attenuation of perfusion recovery. Flow cytometry revealed no differences in ischemia-induced T cells or myeloid cell numbers at 7 days of HLI, yet there was a significant increase in B-1b cells in Id3BKO. Consistent with these findings, ELISA (enzyme-linked immunoassay) demonstrated increases in skeletal muscle and plasma IgM. In vitro experiments demonstrated reduced proliferation and increased cell death when endothelial cells were treated with conditioned media from IgM-producing B-1b cells and tibialis anterior muscles in Id3BKO mice showed reduced density of total CD31+ and αSMA+CD31+ vessels. CONCLUSIONS: This study is the first to demonstrate a role for B-cell-specific Id3 in maintaining blood flow recovery during HLI. Results suggest a role for Id3 in promoting blood flow during HLI and limiting IgM-expressing B-1b cell expansion. These findings present new mechanisms to investigate in peripheral artery disease pathogenesis.


Subject(s)
B-Lymphocytes/metabolism , Immunoglobulin M/metabolism , Inhibitor of Differentiation Proteins/deficiency , Ischemia/metabolism , Muscle, Skeletal/blood supply , Neovascularization, Physiologic , Animals , Cell Proliferation , Cell Survival , Cells, Cultured , Disease Models, Animal , Female , Hindlimb , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Immunoglobulin M/genetics , Inhibitor of Differentiation Proteins/genetics , Ischemia/genetics , Ischemia/pathology , Ischemia/physiopathology , Male , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Recovery of Function , Regional Blood Flow , Time Factors
8.
Expert Opin Ther Targets ; 25(5): 381-391, 2021 05.
Article in English | MEDLINE | ID: mdl-34098826

ABSTRACT

Introduction: Vascular endothelial growth factor (VEGF)-A is a sought therapeutic target for PAD treatment because of its potent role in angiogenesis. However, no therapeutic benefit was achieved in VEGF-A clinical trials, suggesting that our understanding of VEGF-A biology and ischemic angiogenic processes needs development. Alternate splicing in VEGF-A produces pro- and anti-angiogenic VEGF-A isoforms; the only difference being a 6-amino acid switch in the C-terminus of the final 8th exon of the gene. This finding has changed our understanding of VEGF-A biology and may explain the lack of benefit in VEGF-A clinical trials. It presents new therapeutic opportunities for peripheral arterial disease (PAD) treatment.Areas covered: Literature search was conducted to include: 1) predicted mechanism by which the anti-angiogenic VEGF-A isoform would inhibit angiogenesis, 2) unexpected mechanism of action, and 3) how this mechanism revealed novel signaling pathways that may enhance future therapeutics in PAD.Expert opinion: Inhibiting a specific anti-angiogenic VEGF-A isoform in ischemic muscle promotes perfusion recovery in preclinical PAD. Additional efforts focused on the production of these isoforms, and the pathways altered by modulating different VEGF receptor-ligand interactions, and how this new data may allow bedside progress offers new approaches to PAD are discussed.I.


Subject(s)
Molecular Targeted Therapy , Peripheral Arterial Disease/drug therapy , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Alternative Splicing/genetics , Angiogenesis Inhibitors/pharmacology , Animals , Humans , Ligands , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Peripheral Arterial Disease/physiopathology , Protein Isoforms , Signal Transduction/drug effects , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
9.
Int J Mol Sci ; 23(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35008699

ABSTRACT

The interleukin-21 receptor (IL-21R) can be upregulated in endothelial cells (EC) from ischemic muscles in mice following hind-limb ischemia (HLI), an experimental peripheral arterial disease (PAD) model, blocking this ligand-receptor pathway-impaired STAT3 activation, angiogenesis, and perfusion recovery. We sought to identify mRNA and microRNA transcripts that were differentially regulated following HLI, based on the ischemic muscle having intact, or reduced, IL-21/IL21R signaling. In this comparison, 200 mRNAs were differentially expressed but only six microRNA (miR)/miR clusters (and among these only miR-30b) were upregulated in EC isolated from ischemic muscle. Next, myoglobin-overexpressing transgenic (MgTG) C57BL/6 mice examined following HLI and IL-21 overexpression displayed greater angiogenesis, better perfusion recovery, and less tissue necrosis, with increased miR-30b expression. In EC cultured under hypoxia serum starvation, knock-down of miR-30b reduced, while overexpression of miR-30b increased IL-21-mediated EC survival and angiogenesis. In Il21r-/- mice following HLI, miR-30b overexpression vs. control improved perfusion recovery, with a reduction of suppressor of cytokine signaling 3, a miR-30b target and negative regulator of STAT3. Together, miR-30b appears both necessary and sufficient for IL21/IL-21R-mediated angiogenesis and may present a new therapeutic option to treat PAD if the IL21R is not available for activation.


Subject(s)
MicroRNAs/metabolism , Neovascularization, Physiologic/genetics , Peripheral Arterial Disease/genetics , Receptors, Interleukin-21/metabolism , Animals , Cell Survival/genetics , Hindlimb/pathology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Ischemia/genetics , Ischemia/pathology , Mice, Transgenic , MicroRNAs/genetics , Models, Biological , Multigene Family , Myoglobin/metabolism , Perfusion , Peripheral Arterial Disease/pathology , Phosphorylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , STAT3 Transcription Factor/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Up-Regulation/genetics
10.
Pathophysiology ; 26(2): 169-174, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31023564

ABSTRACT

BACKGROUND: Necrotizing enterocolitis (NEC) triggers an intense inflammatory response in the neonatal gut associated with cytokine activation, altered nutrient status and intracellular O2-deprivation. Endothelial cell adhesion molecules (ECAMs) play critical roles in driving immune cell infiltration into inflamed gut. Currently, relationships between inflammation, metabolism and ECAM expression remain poorly understood in NEC. We studied the effects of metabolic depletion (aglycemia/ hypoxia) on TNF-α mediated ECAM expression including ICAM-1, MAdCAM-1, VCAM-1 and E-selectin, in vitro in intestinal microvascular endothelial cells (IMEC). METHODS: To study the effects of TNF-α, aglycemia and hypoxia (alone or in combination) IMECs expression of adhesion molecules was studied using cell surface ELISA and immunoblotting. RESULTS: Total VCAM-1 expression was induced TNF-α and by hypoxia + TNF-α, cell surface expression was induced by hypoxia, TNF-α, TNF- α+hypoxia, and TNF- α+hypoxia and aglycemia. Total ICAM-1 increased following TNF- α, TNF- α+hypoxia, hypoxia + aglycemia, and TNF- α+hypoxia + aglycemia. Total MAdCAM-1 protein expression was significantly induced by a combination of TNF-α+hypoxia + aglycemia and cell surface expression induced by TNF- α+hypoxia. Surface expression of E-selectin was induced by TNF- α+aglycemia and TNF- α+hypoxia + aglycemia. CONCLUSION: Energy metabolism influences inflammation induced injury through mobilization of intestinal ECAMs, and may represent an important mechanism in NEC pathology.

11.
Circulation ; 139(2): 226-242, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30586702

ABSTRACT

BACKGROUND: Atherosclerotic occlusions decrease blood flow to the lower limbs, causing ischemia and tissue loss in patients with peripheral artery disease (PAD). No effective medical therapies are currently available to induce angiogenesis and promote perfusion recovery in patients with severe PAD. Clinical trials aimed at inducing vascular endothelial growth factor (VEGF)-A levels, a potent proangiogenic growth factor to induce angiogenesis, and perfusion recovery were not successful. Alternate splicing in the exon-8 of VEGF-A results in the formation of VEGFxxxa (VEGF165a) and VEGFxxxb (VEGF165b) isoforms with existing literature focusing on VEGF165b's role in inhibiting vascular endothelial growth factor receptor 2-dependent angiogenesis. However, we have recently shown that VEGF165b blocks VEGF-A-induced endothelial vascular endothelial growth factor receptor 1 (VEGFR1) activation in ischemic muscle to impair perfusion recovery. Because macrophage-secreted VEGF165b has been shown to decrease angiogenesis in peripheral artery disease, and macrophages were well known to play important roles in regulating ischemic muscle vascular remodeling, we examined the role of VEGF165b in regulating macrophage function in PAD. METHODS: Femoral artery ligation and resection were used as an in vivo preclinical PAD model, and hypoxia serum starvation was used as an in vitro model for PAD. Experiments including laser-Doppler perfusion imaging, adoptive cell transfer to ischemic muscle, immunoblot analysis, ELISAs, immunostainings, flow cytometry, quantitative polymerase chain reaction analysis, and RNA sequencing were performed to determine a role of VEGF165b in regulating macrophage phenotype and function in PAD. RESULTS: First, we found increased VEGF165b expression with increased M1-like macrophages in PAD versus non-PAD (controls) muscle biopsies. Next, using in vitro hypoxia serum starvation, in vivo pre clinical PAD models, and adoptive transfer of VEGF165b-expressing bone marrow-derived macrophages or VEGFR1+/- bone marrow-derived macrophages (M1-like phenotype), we demonstrate that VEGF165b inhibits VEGFR1 activation to induce an M1-like phenotype that impairs ischemic muscle neovascularization. Subsequently, we found S100A8/S100A9 as VEGFR1 downstream regulators of macrophage polarization by RNA-Seq analysis of hypoxia serum starvation-VEGFR1+/+ versus hypoxia serum starvation-VEGFR1+/- bone marrow-derived macrophages. CONCLUSIONS: In our current study, we demonstrate that increased VEGF165b expression in macrophages induces an antiangiogenic M1-like phenotype that directly impairs angiogenesis. VEGFR1 inhibition by VEGF165b results in S100A8/S100A9-mediated calcium influx to induce an M1-like phenotype that impairs ischemic muscle revascularization and perfusion recovery.


Subject(s)
Calgranulin A/metabolism , Calgranulin B/metabolism , Endothelial Cells/metabolism , Ischemia/metabolism , Macrophages/metabolism , Muscle, Skeletal/blood supply , Neovascularization, Physiologic , Peripheral Arterial Disease/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Calcium Signaling , Cells, Cultured , Disease Models, Animal , Endothelial Cells/pathology , Humans , Ischemia/pathology , Ischemia/physiopathology , Macrophages/pathology , Mice, 129 Strain , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Paracrine Communication , Peripheral Arterial Disease/pathology , Peripheral Arterial Disease/physiopathology , Phenotype , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism
12.
CPT Pharmacometrics Syst Pharmacol ; 6(12): 833-844, 2017 12.
Article in English | MEDLINE | ID: mdl-29193887

ABSTRACT

We built a whole-body computational model to study the role of the poorly understood vascular endothelial growth factor (VEGF)165b splice isoform in peripheral artery disease (PAD). This model was built and validated using published and new experimental data from cells, mice, and humans, and explicitly accounts for known properties of VEGF165b : lack of extracellular matrix (ECM)-binding and weak phosphorylation of vascular endothelial growth factor receptor-2 (VEGFR2) in vitro. The resulting model captures all known information about VEGF165b distribution and signaling in human PAD, and provides novel, nonintuitive insight into VEGF165b mechanism of action in vivo. Although VEGF165a and VEGF165b compete for VEGFR2 in vitro, simulations show that these isoforms do not compete for VEGFR2 at much lower physiological concentrations. Instead, reduced VEGF165a may drive impaired VEGFR2 signaling. The model predicts that VEGF165b does compete for binding to VEGFR1, supporting a VEGFR1-mediated response to anti-VEGF165b . The model predicts a key role for VEGF165b in PAD, but in a different way than previously hypothesized.


Subject(s)
Models, Biological , Peripheral Arterial Disease/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Binding, Competitive , Humans , Peripheral Arterial Disease/blood , Protein Isoforms , Tissue Distribution , Vascular Endothelial Growth Factor A/blood
14.
Circulation ; 135(24): 2403-2425, 2017 Jun 13.
Article in English | MEDLINE | ID: mdl-28356443

ABSTRACT

BACKGROUND: Currently, no therapies exist for treating and improving outcomes in patients with severe peripheral artery disease (PAD). MicroRNA93 (miR93) has been shown to favorably modulate angiogenesis and to reduce tissue loss in genetic PAD models. However, the cell-specific function, downstream mechanisms, or signaling involved in miR93-mediated ischemic muscle neovascularization is not clear. Macrophages were best known to modulate arteriogenic response in PAD, and the extent of arteriogenic response induced by macrophages is dependent on greater M2 to M1 activation/polarization state. In the present study, we identified a novel mechanism by which miR93 regulates macrophage polarization to promote angiogenesis and arteriogenesis to revascularize ischemic muscle in experimental PAD. METHODS: In vitro (macrophages, endothelial cells, skeletal muscle cells under normal and hypoxia serum starvation conditions) and in vivo experiments in preclinical PAD models (unilateral femoral artery ligation and resection) were conducted to examine the role of miR93-interferon regulatory factor-9-immunoresponsive gene-1 (IRG1)-itaconic acid pathway in macrophage polarization, angiogenesis, arteriogenesis, and perfusion recovery. RESULTS: In vivo, compared with wild-type controls, miR106b-93-25 cluster-deficient mice (miR106b-93-25-/-) showed decreased angiogenesis and arteriogenesis correlating with increased M1-like macrophages after experimental PAD. Intramuscular delivery of miR93 in miR106b-93-25-/- PAD mice increased angiogenesis, arteriogenesis, and the extent of perfusion, which correlated with more M2-like macrophages in the proximal and distal hind-limb muscles. In vitro, miR93 promotes and sustains M2-like polarization even under M1-like polarizing conditions (hypoxia serum starvation). Delivery of bone marrow-derived macrophages from miR106b-93-25-/- to wild-type ischemic muscle decreased angiogenesis, arteriogenesis, and perfusion, whereas transfer of wild-type macrophages to miR106b-93-25-/- had the opposite effect. Systematic analysis of top differentially upregulated genes from RNA sequencing between miR106b-93-25-/- and wild-type ischemic muscle showed that miR93 regulates IRG1 function to modulate itaconic acid production and macrophage polarization. The 3' untranslated region luciferase assays performed to determine whether IRG1 is a direct target of miR93 revealed that IRG1 is not an miR93 target but that interferon regulatory factor-9, which can regulate IRG1 expression, is an miR93 target. In vitro, increased expression of interferon regulatory factor-9 and IRG1 and itaconic acid treatment significantly decreased endothelial angiogenic potential. CONCLUSIONS: miR93 inhibits interferon regulatory factor-9 to decrease IRG1-itaconic acid production to induce M2-like polarization in ischemic muscle to enhance angiogenesis, arteriogenesis, and perfusion recovery in experimental PAD.


Subject(s)
Hydro-Lyases/metabolism , Ischemia/metabolism , Macrophages/metabolism , MicroRNAs/metabolism , Neovascularization, Physiologic/physiology , Succinates/metabolism , Animals , Cell Polarity/physiology , Hindlimb/blood supply , Hindlimb/metabolism , Humans , Hydro-Lyases/antagonists & inhibitors , Hydro-Lyases/genetics , Ischemia/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Peripheral Arterial Disease/genetics , Peripheral Arterial Disease/metabolism , Signal Transduction/physiology , Succinates/antagonists & inhibitors
15.
Circ Res ; 120(2): 282-295, 2017 Jan 20.
Article in English | MEDLINE | ID: mdl-27974423

ABSTRACT

RATIONALE: Atherosclerotic-arterial occlusions decrease tissue perfusion causing ischemia to lower limbs in patients with peripheral arterial disease (PAD). Ischemia in muscle induces an angiogenic response, but the magnitude of this response is frequently inadequate to meet tissue perfusion requirements. Alternate splicing in the exon-8 of vascular endothelial growth factor (VEGF)-A results in production of proangiogenic VEGFxxxa isoforms (VEGF165a, 165 for the 165 amino acid product) and antiangiogenic VEGFxxxb (VEGF165b) isoforms. OBJECTIVE: The antiangiogenic VEGFxxxb isoforms are thought to antagonize VEGFxxxa isoforms and decrease activation of VEGF receptor-2 (VEGFR2), hereunto considered the dominant receptor in postnatal angiogenesis in PAD. Our data will show that VEGF165b inhibits VEGFR1 signal transducer and activator of transcription (STAT)-3 signaling to decrease angiogenesis in human and experimental PAD. METHODS AND RESULTS: In human PAD versus control muscle biopsies, VEGF165b: (1) is elevated, (2) is bound higher (versus VEGF165a) to VEGFR1 not VEGFR2, and (3) levels correlated with decreased VEGFR1, not VEGFR2, activation. In experimental PAD, delivery of an isoform-specific monoclonal antibody to VEGF165b versus control antibody enhanced perfusion in animal model of severe PAD (Balb/c strain) without activating VEGFR2 signaling but with increased VEGFR1 activation. Receptor pull-down experiments demonstrate that VEGF165b inhibition versus control increased VEGFR1-STAT3 binding and STAT3 activation, independent of Janus-activated kinase-1)/Janus-activated kinase-2. Using VEGFR1+/- mice that could not increase VEGFR1 after ischemia, we confirm that VEGF165b decreases VEGFR1-STAT3 signaling to decrease perfusion. CONCLUSIONS: Our results indicate that VEGF165b prevents activation of VEGFR1-STAT3 signaling by VEGF165a and hence inhibits angiogenesis and perfusion recovery in PAD muscle.


Subject(s)
Endothelium, Vascular/metabolism , Neovascularization, Pathologic/metabolism , Peripheral Arterial Disease/metabolism , STAT3 Transcription Factor/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Animals , Cohort Studies , Endothelium, Vascular/pathology , Female , HEK293 Cells , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Mice , Mice, 129 Strain , Mice, Inbred BALB C , Mice, Transgenic , Neovascularization, Pathologic/drug therapy , Peripheral Arterial Disease/drug therapy , Protein Binding/physiology , Signal Transduction/drug effects , Signal Transduction/physiology , Vascular Endothelial Growth Factor A/administration & dosage
16.
Sci Rep ; 6: 37030, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27853189

ABSTRACT

Angiogenesis is the growth of new blood vessels from pre-existing microvessels. Peripheral arterial disease (PAD) is caused by atherosclerosis that results in ischemia mostly in the lower extremities. Clinical trials including VEGF-A administration for therapeutic angiogenesis have not been successful. The existence of anti-angiogenic isoform (VEGF165b) in PAD muscle tissues is a potential cause for the failure of therapeutic angiogenesis. Experimental measurements show that in PAD human muscle biopsies the VEGF165b isoform is at least as abundant if not greater than the VEGF165a isoform. We constructed three-compartment models describing VEGF isoforms and receptors, in human and mouse, to make predictions on the secretion rate of VEGF165b and the distribution of various isoforms throughout the body based on the experimental data. The computational results are consistent with the data showing that in PAD calf muscles secrete mostly VEGF165b over total VEGF. In the PAD calf compartment of human and mouse models, most VEGF165a and VEGF165b are bound to the extracellular matrix. VEGF receptors VEGFR1, VEGFR2 and Neuropilin-1 (NRP1) are mostly in 'Free State'. This study provides a computational model of VEGF165b in PAD supported by experimental measurements of VEGF165b in human and mouse, which gives insight of VEGF165b in therapeutic angiogenesis and VEGF distribution in human and mouse PAD model.


Subject(s)
Angiogenesis Inhibitors/metabolism , Neovascularization, Pathologic/metabolism , Peripheral Arterial Disease/metabolism , Protein Isoforms/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Computer Simulation , Extracellular Matrix/metabolism , Humans , Mice , Neuropilin-1/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
17.
Cell Commun Signal ; 12: 7, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24438487

ABSTRACT

Neurovascular and gliovascular interactions significantly affect endothelial phenotype. Physiologically, brain endothelium attains several of its properties by its intimate association with neurons and astrocytes. However, during cerebrovascular pathologies such as cerebral ischemia, the uncoupling of neurovascular and gliovascular units can result in several phenotypical changes in brain endothelium. The role of neurovascular and gliovascular uncoupling in modulating brain endothelial properties during cerebral ischemia is not clear. Specifically, the roles of metabolic stresses involved in cerebral ischemia, including aglycemia, hypoxia and combined aglycemia and hypoxia (oxygen glucose deprivation and re-oxygenation, OGDR) in modulating neurovascular and gliovascular interactions are not known. The complex intimate interactions in neurovascular and gliovascular units are highly difficult to recapitulate in vitro. However, in the present study, we used a 3D co-culture model of brain endothelium with neurons and astrocytes in vitro reflecting an intimate neurovascular and gliovascular interactions in vivo. While the cellular signaling interactions in neurovascular and gliovascular units in vivo are much more complex than the 3D co-culture models in vitro, we were still able to observe several important phenotypical changes in brain endothelial properties by metabolically stressed neurons and astrocytes including changes in barrier, lymphocyte adhesive properties, endothelial cell adhesion molecule expression and in vitro angiogenic potential.


Subject(s)
Astrocytes/metabolism , Brain Ischemia/metabolism , Brain/metabolism , Cell Communication , Endothelial Cells/metabolism , Neurons/metabolism , Stress, Physiological , Astrocytes/physiology , Brain/cytology , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Hypoxia , Cell Line , Cell Line, Tumor , Endothelial Cells/physiology , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiology , Glucose/metabolism , Humans , In Vitro Techniques , Neurons/physiology
18.
J Neuroinflammation ; 10: 125, 2013 Oct 14.
Article in English | MEDLINE | ID: mdl-24124909

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is associated with ectopic lymphoid follicle formation. Podoplanin+ (lymphatic marker) T helper17 (Th17) cells and B cell aggregates have been implicated in the formation of tertiary lymphoid organs (TLOs) in MS and experimental autoimmune encephalitis (EAE). Since podoplanin expressed by Th17 cells in MS brains is also expressed by lymphatic endothelium, we investigated whether the pathophysiology of MS involves inductions of lymphatic proteins in the inflamed neurovasculature. METHODS: We assessed the protein levels of lymphatic vessel endothelial hyaluronan receptor and podoplanin, which are specific to the lymphatic system and prospero-homeobox protein-1, angiopoietin-2, vascular endothelial growth factor-D, vascular endothelial growth factor receptor-3, which are expressed by both lymphatic endothelium and neurons. Levels of these proteins were measured in postmortem brains and sera from MS patients, in the myelin proteolipid protein (PLP)-induced EAE and Theiler's murine encephalomyelitis virus (TMEV) induced demyelinating disease (TMEV-IDD) mouse models and in cell culture models of inflamed neurovasculature. RESULTS AND CONCLUSIONS: Intense staining for LYVE-1 was found in neurons of a subset of MS patients using immunohistochemical approaches. The lymphatic protein, podoplanin, was highly expressed in perivascular inflammatory lesions indicating signaling cross-talks between inflamed brain vasculature and lymphatic proteins in MS. The profiles of these proteins in MS patient sera discriminated between relapsing remitting MS from secondary progressive MS and normal patients. The in vivo findings were confirmed in the in vitro cell culture models of neuroinflammation.


Subject(s)
Brain/immunology , Membrane Glycoproteins/biosynthesis , Multiple Sclerosis/immunology , Vesicular Transport Proteins/biosynthesis , Aged , Animals , Blotting, Western , Brain/metabolism , Brain/pathology , Demyelinating Diseases/immunology , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Endothelium, Lymphatic/immunology , Endothelium, Lymphatic/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Male , Membrane Glycoproteins/analysis , Mice , Middle Aged , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Neurons/metabolism , Neurons/pathology , Principal Component Analysis , Theilovirus , Vesicular Transport Proteins/analysis
19.
Pathophysiology ; 20(1): 15-21, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22633746

ABSTRACT

Traumatic brain injury (TBI) and sub-arachnoid hemorrhage (SAH) are major causes of long-term disability, mortality, and enormous economic costs to society. The full spectrum of neurological damage created by TBI or SAH is not usually manifested at the time of injury, but evolves gradually over the course of hours to days (or weeks) following these injuries. Angiopoietins, important regulators of vascular structure and function, are hallmark indicators of vascular injury and may therefore represent promising targets in the treatment of SAH and TBI. In animal models and human tissues, normal intracerebral and pial vessels show strong expression of Angiopoietin-1 (Ang-1), but only minimal expression or presentation of Angiopoietin-2 (Ang-2). After several types of neurotrauma, the ratios of Ang-1 and Ang-2 expression in brain microvessel are disturbed and appear to contribute to the remarkable loss of blood-brain barrier (BBB) in these injuries. Angiopoietins levels, and perhaps more importantly, Angiopoietin ratios (1:2) may have novel and important diagnostic and prognostic uses in TBI and SAH brain injury. Ang-1/2 evaluation in plasma, serum and cerebrospinal fluid may provide new therapeutic modalities which can modify 'secondary' forms of brain injury after TBI and SAH.

20.
Microcirculation ; 19(2): 155-65, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21981016

ABSTRACT

OBJECTIVE: Cytokines contribute to cerebro-vascular inflammatory and immune responses by inducing ECAMs' expression. Ischemic insults can be separated into aglycemic and hypoxic components. However, whether aglycemia, hypoxia or OGD plays a major role in dysregulating BBB or promotes immune cell infiltration via ECAMs' expression is not clear. We investigated how expression of ICAM-1, VCAM-1, MAdCAM-1, PECAM-1, E- and P-selectin in response to TNF-α, IL-1ß and IFN-γ was altered by aglycemia (A), hypoxia (H) or combined oxygen glucose deprivation (OGD). METHODS: A cell surface enzyme linked immunoabsorbent assay (cell surface ELISA) was used to analyze ECAM expression. RESULTS: We observed that ICAM-1 and PECAM-1 expressions were insensitive to hypoxia, aglycemia or OGD. Conversely, VCAM-1 and E-selectin were increased by hypoxia, but not by aglycemia. MAdCAM-1 and P-selectin were induced by hypoxia, and decreased by aglycemia. Patterns of cytokine-regulated ECAMs' expression were also modified by metabolic conditions. CONCLUSIONS: Our results indicate that patterns of inflammation-associated ECAMs represent cumulative influences from metabolic stressors, as well as cytokine activation. The expression of ECAMs following tissue injury reflects mechanistic interactions between metabolic disturbances, and alterations in tissue cytokines. Normalization of tissue metabolism, as well as cytokine profiles, may provide important targets for therapeutic treatment of inflammation.


Subject(s)
Brain/metabolism , Cell Adhesion Molecules/biosynthesis , Cytokines/pharmacology , Endothelial Cells/metabolism , Gene Expression Regulation/drug effects , Animals , Brain/pathology , Cell Hypoxia/drug effects , Cell Line , Endothelial Cells/pathology , Glucose/metabolism , Glucose/pharmacology , Mice , Sweetening Agents/metabolism , Sweetening Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...