Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(11): e2307444, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38112236

ABSTRACT

Anisotropic materials formed by living organisms possess remarkable mechanical properties due to their intricate microstructure and directional freedom. In contrast, human-made materials face challenges in achieving similar levels of directionality due to material and manufacturability constraints. To overcome these limitations, an approach using 3D printing of self-assembling thermotropic liquid crystal polymers (LCPs) is presented. Their high stiffness and strength is granted by nematic domains aligning during the extrusion process. Here, a remarkably wide range of Young's modulus from 3 to 40 GPa is obtained by utilizing directionality of the nematic flow the printing process.   By determining a relationship between stiffness, nozzle diameter, and line width, a design space where shaping and mechanical performance can be combined is identified. The ability to print LCPs with on-the-fly width changes to accommodate arbitrary spatially varying directions is demonstrated. This unlocks the possibility to manufacture exquisite patterns inspired by fluid dynamics with steep curvature variations. Utilizing the synergy between this path-planning method and LCPs, functional objects with stiffness and curvature gradients can be 3D-printed, offering potential applications in lightweight sustainable structures embedding crack-mitigation strategies. This method also opens avenues for studying and replicating intricate patterns observed in nature, such as wood or turbulent flow using 3D printing.

2.
Nat Mater ; 22(1): 128-134, 2023 01.
Article in English | MEDLINE | ID: mdl-36550372

ABSTRACT

Biological living materials, such as animal bones and plant stems, are able to self-heal, regenerate, adapt and make decisions under environmental pressures. Despite recent successful efforts to imbue synthetic materials with some of these remarkable functionalities, many emerging properties of complex adaptive systems found in biology remain unexplored in engineered living materials. Here, we describe a three-dimensional printing approach that harnesses the emerging properties of fungal mycelia to create living complex materials that self-repair, regenerate and adapt to the environment while fulfilling an engineering function. Hydrogels loaded with the fungus Ganoderma lucidum are three-dimensionally printed into lattice architectures to enable mycelial growth in a balanced exploration and exploitation pattern that simultaneously promotes colonization of the gel and bridging of air gaps. To illustrate the potential of such mycelium-based living complex materials, we three-dimensionally print a robotic skin that is mechanically robust, self-cleaning and able to autonomously regenerate after damage.


Subject(s)
Hydrogels , Printing, Three-Dimensional , Animals , Engineering , Tissue Engineering
3.
Nat Biotechnol ; 38(1): 39-43, 2020 01.
Article in English | MEDLINE | ID: mdl-31819259

ABSTRACT

DNA storage offers substantial information density1-7 and exceptional half-life3. We devised a 'DNA-of-things' (DoT) storage architecture to produce materials with immutable memory. In a DoT framework, DNA molecules record the data, and these molecules are then encapsulated in nanometer silica beads8, which are fused into various materials that are used to print or cast objects in any shape. First, we applied DoT to three-dimensionally print a Stanford Bunny9 that contained a 45 kB digital DNA blueprint for its synthesis. We synthesized five generations of the bunny, each from the memory of the previous generation without additional DNA synthesis or degradation of information. To test the scalability of DoT, we stored a 1.4 MB video in DNA in plexiglass spectacle lenses and retrieved it by excising a tiny piece of the plexiglass and sequencing the embedded DNA. DoT could be applied to store electronic health records in medical implants, to hide data in everyday objects (steganography) and to manufacture objects containing their own blueprint. It may also facilitate the development of self-replicating machines.


Subject(s)
DNA/metabolism , Preservation, Biological , Gene Library , Printing, Three-Dimensional
4.
Nature ; 561(7722): 226-230, 2018 09.
Article in English | MEDLINE | ID: mdl-30209371

ABSTRACT

Fibre-reinforced polymer structures are often used when stiff lightweight materials are required, such as in aircraft, vehicles and biomedical implants. Despite their very high stiffness and strength1, such lightweight materials require energy- and labour-intensive fabrication processes2, exhibit typically brittle fracture and are difficult to shape and recycle3,4. This is in stark contrast to lightweight biological materials such as bone, silk and wood, which form by directed self-assembly into complex, hierarchically structured shapes with outstanding mechanical properties5-11, and are circularly integrated into the environment. Here we demonstrate a three-dimensional (3D) printing approach to generate recyclable lightweight structures with hierarchical architectures, complex geometries and unprecedented stiffness and toughness. Their features arise from the self-assembly of liquid-crystal polymer molecules into highly oriented domains during extrusion of the molten feedstock material. By orienting the molecular domains with the print path, we are able to reinforce the polymer structure according to the expected mechanical stresses, leading to stiffness, strength and toughness that outperform state-of-the-art 3D-printed polymers by an order of magnitude and are comparable with the highest-performance lightweight composites1,12. The ability to combine the top-down shaping freedom of 3D printing with bottom-up molecular control over polymer orientation opens up the possibility to freely design and realize structures without the typical restrictions of current manufacturing processes.

5.
Adv Healthc Mater ; 5(16): 2045-54, 2016 08.
Article in English | MEDLINE | ID: mdl-27245368

ABSTRACT

The use of stretchable electrodes interfaced with the human body has enabled a new frontier in biomedical engineering, and the miniaturization of such electrodes can allow for a more precise spatial control to monitor or stimulate tissues. The understanding of the response of cells or tissues to combined electromechanical stimulation, as made possible by stretchable electrodes, is essential to improve medical devices and therapies. Cheap to produce and easy to use platforms for in vitro cell studies are thus urgently needed. This study reports the successful implementation of silver nanowires (AgNWs) into an integrated miniaturized electromechanical stimulator, which is compatible with cell culture. The innovative steps include a lithography-based lift-off method to micropattern AgNWs onto an elastic silicone membrane. These stretchable microelectrodes are then integrated into a microfluidic device for cell culture, which enables the synchronous electromechanical stimulation of cells. In a proof-of-concept study, it is furthermore shown that fibroblasts respond uniquely to mechanical stretching, electrical stimulation, and combined electromechanical stimulations in terms of cell alignment and morphology, as well as by producing the extracellular matrix protein collagen. This proof-of-concept study illustrates the functionality and usability of these stretchable AgNWs microelectrodes for either basic research or future biomedical applications.


Subject(s)
Lab-On-A-Chip Devices , Nanowires/chemistry , Silver/chemistry , Animals , Cell Adhesion , Cell Line , Collagen/biosynthesis , Electric Stimulation/instrumentation , Electric Stimulation/methods , Humans , Microelectrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...