Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Plant Physiol ; 238: 72-79, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31146184

ABSTRACT

Sodium arsenite (NaAsO2) was especially used as a dormant spray to control grapevine trunk diseases (GTDs) in European vineyards until 2003 when it was banned. It was an efficient product but it was banned due to high risk for human health and the environment. Now, as one of the consequences with climatic changes, GTDs threaten the sustainability of vineyards since no similar and efficacious sprays are presently available to reduce the impact of GTDs. Research efforts were devoted to identify other active ingredients and biological control agents but they remained limited in term of efficacy. New solutions might follow from a better understanding of the modes of action of sodium arsenite which are currently lacking, specially its impact on grapevine physiology. For this study, grafted plants cv. Tempranillo were sprayed by sodium arsenite at the end of the winter. During the vegetative period, the impact on plant physiology was studied by measurement of the photosynthetic activity, the vine growth and development, and some defense responses. Our results showed that arsenic was translocated throughout the vine with an increasing gradient from the leaves to the root system, that photosynthesis was firstly reduced and then stimulated, and that plant tolerance responses were induced especially antioxidant system. The activation of grapevine defense responses by sodium arsenite could be a complementary action to fight fungal pathogens in addition to the fungicide effect.


Subject(s)
Arsenites/pharmacology , Sodium Compounds/pharmacology , Vitis/drug effects , Photosynthesis/drug effects , Plant Diseases/prevention & control , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Stems/drug effects , Plant Stems/metabolism , Polymerase Chain Reaction , Vitis/growth & development , Vitis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...