Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Am Heart Assoc ; 11(18): e026067, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36102243

ABSTRACT

Background Patients with congenital heart disease (CHD) are at risk for the development of low cardiac output and other physiologic derangements, which could be detected early through continuous stroke volume (SV) measurement. Unfortunately, existing SV measurement methods are limited in the clinic because of their invasiveness (eg, thermodilution), location (eg, cardiac magnetic resonance imaging), or unreliability (eg, bioimpedance). Multimodal wearable sensing, leveraging the seismocardiogram, a sternal vibration signal associated with cardiomechanical activity, offers a means to monitoring SV conveniently, affordably, and continuously. However, it has not been evaluated in a population with significant anatomical and physiological differences (ie, children with CHD) or compared against a true gold standard (ie, cardiac magnetic resonance). Here, we present the feasibility of wearable estimation of SV in a diverse CHD population (N=45 patients). Methods and Results We used our chest-worn wearable biosensor to measure baseline ECG and seismocardiogram signals from patients with CHD before and after their routine cardiovascular magnetic resonance imaging, and derived features from the measured signals, predominantly systolic time intervals, to estimate SV using ridge regression. Wearable signal features achieved acceptable SV estimation (28% error with respect to cardiovascular magnetic resonance imaging) in a held-out test set, per cardiac output measurement guidelines, with a root-mean-square error of 11.48 mL and R2 of 0.76. Additionally, we observed that using a combination of electrical and cardiomechanical features surpassed the performance of either modality alone. Conclusions A convenient wearable biosensor that estimates SV enables remote monitoring of cardiac function and may potentially help identify decompensation in patients with CHD.


Subject(s)
Heart Defects, Congenital , Wearable Electronic Devices , Child , Heart , Heart Defects, Congenital/complications , Heart Defects, Congenital/diagnosis , Humans , Stroke Volume/physiology , Thermodilution
2.
Sensors (Basel) ; 22(3)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35161876

ABSTRACT

Heart failure (HF) exacerbations, characterized by pulmonary congestion and breathlessness, require frequent hospitalizations, often resulting in poor outcomes. Current methods for tracking lung fluid and respiratory distress are unable to produce continuous, holistic measures of cardiopulmonary health. We present a multimodal sensing system that captures bioimpedance spectroscopy (BIS), multi-channel lung sounds from four contact microphones, multi-frequency impedance pneumography (IP), temperature, and kinematics to track changes in cardiopulmonary status. We first validated the system on healthy subjects (n = 10) and then conducted a feasibility study on patients (n = 14) with HF in clinical settings. Three measurements were taken throughout the course of hospitalization, and parameters relevant to lung fluid status-the ratio of the resistances at 5 kHz to those at 150 kHz (K)-and respiratory timings (e.g., respiratory rate) were extracted. We found a statistically significant increase in K (p < 0.05) from admission to discharge and observed respiratory timings in physiologically plausible ranges. The IP-derived respiratory signals and lung sounds were sensitive enough to detect abnormal respiratory patterns (Cheyne-Stokes) and inspiratory crackles from patient recordings, respectively. We demonstrated that the proposed system is suitable for detecting changes in pulmonary fluid status and capturing high-quality respiratory signals and lung sounds in a clinical setting.


Subject(s)
Heart Failure , Wearable Electronic Devices , Humans , Lung , Respiratory Rate , Respiratory Sounds/diagnosis
3.
IEEE J Biomed Health Inform ; 26(6): 2481-2492, 2022 06.
Article in English | MEDLINE | ID: mdl-35077375

ABSTRACT

OBJECTIVE: At-home monitoring of respiration is of critical urgency especially in the era of the global pandemic due to COVID-19. Electrocardiogram (ECG) and seismocardiogram (SCG) signals-measured in less cumbersome contact form factors than the conventional sealed mask that measures respiratory air flow-are promising solutions for respiratory monitoring. In particular, respiratory rates (RR) can be estimated from ECG-derived respiratory (EDR) and SCG-derived respiratory (SDR) signals. Yet, non-respiratory artifacts might still be present in these surrogates of respiratory signals, hindering the accuracy of the RRs estimated. METHODS: In this paper, we propose a novel U-Net-based cascaded framework to address this problem. The EDR and SDR signals were transformed to the spectro-temporal domain and subsequently denoised by a 2D U-Net to reduce the non-respiratory artifacts. MAJOR RESULTS: We have shown that the U-Net that fused an EDR input and an SDR input achieved a low mean absolute error of 0.82 breaths per minute (bpm) and a coefficient of determination (R2) of 0.89 using data collected from our chest-worn wearable patch. We also qualitatively provided insights on the complementariness between EDR and SDR signals and demonstrated the generalizability of the proposed framework. CONCLUSION: ECG and SCG collected from a chest-worn wearable patch can complement each other and yield reliable RR estimation using the proposed cascaded framework. SIGNIFICANCE: We anticipate that convenient and comfortable ECG and SCG measurement systems can be augmented with this framework to facilitate pervasive and accurate RR measurement.


Subject(s)
COVID-19 , Respiratory Rate , Artifacts , Electrocardiography , Humans , Respiration , Signal Processing, Computer-Assisted
4.
IEEE Sens J ; 22(18): 18093-18103, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-37091042

ABSTRACT

The current COVID-19 pandemic highlights the critical importance of ubiquitous respiratory health monitoring. The two fundamental elements of monitoring respiration are respiration rate (the frequency of breathing) and tidal volume (TV, the volume of air breathed by the lungs in each breath). Wearable sensing systems have been demonstrated to provide accurate measurement of respiration rate, but TV remains challenging to measure accurately with wearable and unobtrusive technology. In this work, we leveraged electrocardiogram (ECG) and seismocardiogram (SCG) measurements obtained with a custom wearable sensing patch to derive an estimate of TV from healthy human participants. Specifically, we fused both ECG-derived and SCG-derived respiratory signals (EDR and SDR) and trained a machine learning model with gas rebreathing as the ground truth to estimate TV. The respiration cycle modulates ECG and SCG signals in multiple different ways that are synergistic. Thus, here we extract EDRs and SDRs using a multitude of different demodulation techniques. The extracted features are used to train a subject independent machine learning model to accurately estimate TV. By fusing the extracted EDRs and SDRs, we were able to estimate the TV with a root-mean-square error (RMSE) of 181.45 mL and Pearson correlation coefficient (r) of 0.61, with a global subject-independent model. We further show that SDRs are better TV estimators than EDRs. Among SDRs, amplitude modulated (AM) SCG features are the most correlated to TV. We demonstrated that fusing EDRs and SDRs can result in moderately accurate estimation of TV using a subject-independent model. Additionally, we highlight the most informative features for estimating TV. This work presents a significant step towards achieving continuous, calibration free, and unobtrusive TV estimation, which could advance the state of the art in wearable respiratory monitoring.

5.
IEEE Trans Biomed Eng ; 69(1): 176-185, 2022 01.
Article in English | MEDLINE | ID: mdl-34161234

ABSTRACT

OBJECTIVE: Wearable systems that enable continuous non-invasive monitoring of hemodynamic parameters can aid in cardiac health evaluation in non-hospital settings. The seismocardiogram (SCG) is a non-invasively acquired cardiovascular biosignal for which timings of fiducial points, like aortic valve opening (AO) and aortic valve closing (AC), can enable estimation of key hemodynamic parameters. However, SCG is susceptible to motion artifacts, making accurate estimation of these points difficult when corrupted by high-g or in-band vibration artifacts. In this paper, a novel denoising pipeline is proposed that removes vehicle-vibration artifacts from corrupted SCG beats for accurate fiducial point detection. METHODS: The noisy SCG signal is decomposed with ensemble empirical mode decomposition (EEMD). Corrupted segments of the decomposed signal are then identified and removed using the quasi-periodicity of the SCG. Signal quality assessment of the reconstructed SCG beats then removes unreliable beats before feature extraction. The overall approach is validated on simulated vehicle-corrupted SCG generated by adding real subway collected vibration signals onto clean SCG. RESULTS: SNR increased by 8.1dB in the AO complex and 11.5dB in the AC complex of the SCG signal. Hemodynamic timing estimation errors reduced by 16.5% for pre-ejection period (PEP), 67.2% for left ventricular ejection time (LVET), and 57.7% for PEP/LVET-a feature previously determined in prior work to be of great importance for assessing blood volume status during hemorrhage. CONCLUSION: These findings suggest that usable SCG signals can be recovered from vehicle-corrupted SCG signals using the presented denoising framework, allowing for accurate hemodynamic timing estimation. SIGNIFICANCE: Reliable hemodynamic estimates from vehicle-corrupted SCG signals will enable the adoption of the SCG in outside-of-hospital settings.


Subject(s)
Electrocardiography , Vibration , Aortic Valve , Artifacts , Heart Rate , Signal Processing, Computer-Assisted
6.
IEEE Trans Biomed Eng ; 69(6): 1909-1919, 2022 06.
Article in English | MEDLINE | ID: mdl-34818186

ABSTRACT

OBJECTIVE: Evaluating convenient, wearable multi-frequency impedance pneumography (IP)-based respiratory monitoring in ambulatory persons with novel electrode positioning. METHODS: A wearable multi-frequency IP system was utilized to estimate tidal volume (TV) and respiratory timings in 14 healthy subjects. A 5.1 cm × 5.1 cm tetrapolar electrode array, affixed to the sternum, and a conventional thoracic electrode configuration were employed to measure the respective IP signals, patch and thoracic IP. Data collected during static postures-sitting and supine-and activities-walking and stair-stepping-were evaluated against a simultaneously-obtained spirometer (SP) volume signal. RESULTS: Across all measurements, estimated TV obtained from the patch and thoracic IP maintained a Pearson correlation coefficient (r) of 0.93 ± 0.05 and 0.95 ± 0.05 to the ground truth TV, respectively, with an associated root-mean-square error (RMSE) of 0.177 L and 0.129 L, respectively. Average respiration rates (RRs) were extracted from 30-second segments with mean-absolute-percentage errors (MAPEs) of 0.93% and 0.74% for patch and thoracic IP, respectively. Likewise, average inspiratory and expiratory timings were identified with MAPEs less than 6% and 4.5% for patch and thoracic IP, respectively. CONCLUSION: We demonstrated that patch IP performs comparably to traditional, cumbersome IP configurations. We also present for the first time, to the best of our knowledge, that IP can robustly estimate breath-by-breath TV and respiratory timings during ambulation. SIGNIFICANCE: This work represents a notable step towards pervasive wearable ambulatory respiratory monitoring via the fusion of a compact chest-worn form factor and multi-frequency IP that can be readily adapted for holistic cardiopulmonary monitoring.


Subject(s)
Respiratory Rate , Wearable Electronic Devices , Electric Impedance , Humans , Monitoring, Ambulatory , Tidal Volume
7.
Biosensors (Basel) ; 11(12)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34940278

ABSTRACT

In light of the recent Coronavirus disease (COVID-19) pandemic, peripheral oxygen saturation (SpO2) has shown to be amongst the vital signs most indicative of deterioration in persons with COVID-19. To allow for the continuous monitoring of SpO2, we attempted to demonstrate accurate SpO2 estimation using our custom chest-based wearable patch biosensor, capable of measuring electrocardiogram (ECG) and photoplethysmogram (PPG) signals with high fidelity. Through a breath-hold protocol, we collected physiological data with a wide dynamic range of SpO2 from 20 subjects. The ratio of ratios (R) used in pulse oximetry to estimate SpO2 was robustly extracted from the red and infrared PPG signals during the breath-hold segments using novel feature extraction and PPGgreen-based outlier rejection algorithms. Through subject independent training, we achieved a low root-mean-square error (RMSE) of 2.64 ± 1.14% and a Pearson correlation coefficient (PCC) of 0.89. With subject-specific calibration, we further reduced the RMSE to 2.27 ± 0.76% and increased the PCC to 0.91. In addition, we showed that calibration is more efficiently accomplished by standardizing and focusing on the duration of breath-hold rather than the resulting range in SpO2. The accurate SpO2 estimation provided by our custom biosensor and the algorithms provide research opportunities for a wide range of disease and wellness monitoring applications.


Subject(s)
COVID-19 , Monitoring, Physiologic/instrumentation , Wearable Electronic Devices , Biosensing Techniques , COVID-19/diagnosis , Electrocardiography , Humans , Oximetry , Oxygen , Oxygen Saturation , Photoplethysmography , Sternum
8.
IEEE J Biomed Health Inform ; 25(6): 1926-1937, 2021 06.
Article in English | MEDLINE | ID: mdl-32881697

ABSTRACT

OBJECTIVE: We developed a wearable watch-based device to provide noninvasive, cuff-less blood pressure (BP) estimation in an at-home setting. METHODS: The watch measures single-lead electrocardiogram (ECG), tri-axial seismocardiogram (SCG), and multi-wavelength photoplethysmogram (PPG) signals to compute the pulse transit time (PTT), allowing for BP estimation. We sent our custom watch device and an oscillometric BP cuff home with 21 healthy subjects, and captured the natural variability in BP over the course of a 24-hour period. RESULTS: After calibration, our Pearson correlation coefficient (PCC) of 0.69 and root-mean-square-error (RMSE) of 2.72 mmHg suggest that noninvasive PTT measurements correlate with around-the-clock BP. Using a novel two-point calibration method, we achieved a RMSE of 3.86 mmHg. We further demonstrated the potential of a semi-globalized adaptive model to reduce calibration requirements. CONCLUSION: This is, to the best of our knowledge, the first time that BP has been comprehensively estimated noninvasively using PTT in an at-home setting. We showed a more convenient method for obtaining ambulatory BP than through the use of the standard oscillometric cuff. We presented new calibration methods for BP estimation using fewer calibration points that are more practical for a real-world scenario. SIGNIFICANCE: A custom watch (SeismoWatch) capable of taking multiple BP measurements enables reliable remote monitoring of daily BP and paves the way towards convenient hypertension screening and management, which can potentially reduce hospitalizations and improve quality of life.


Subject(s)
Quality of Life , Wearable Electronic Devices , Blood Pressure , Blood Pressure Determination , Humans , Photoplethysmography , Pulse Wave Analysis
9.
IEEE Trans Biomed Eng ; 67(4): 1019-1029, 2020 04.
Article in English | MEDLINE | ID: mdl-31295102

ABSTRACT

OBJECTIVE: We present a robust methodology for tracking ankle edema longitudinally based on bioimpedance spectroscopy (BIS). METHODS: We designed a miniaturized BIS measurement system and employed a novel calibration method that enables accurate, high-resolution measurements with substantially lower power consumption than conventional approaches. Using this state-of-the-art wearable BIS measurement system, we developed a differential measurement technique for robust assessment of ankle edema. This technique addresses many of the major challenges in longitudinal BIS-based edema assessment, including day-to-day variability in electrode placement, positional/postural variability, and intersubject variability. RESULTS: We first evaluated the hardware in bench-top testing, and determined the error of the bioimpedance measurements to be 0.4 Ω for the real components and 0.54 Ω for the imaginary components with a resolution of 0.2 Ω. We then validated the hardware and differential measurement technique in: 1) an ex vivo, fresh-frozen, cadaveric limb model, and 2) a cohort of 11 human subjects for proof of concept (eight healthy controls and five subjects with recently acquired acute unilateral ankle injury). CONCLUSION: The hardware design, with novel calibration methodology, and differential measurement technique can potentially enable long-term quantification of ankle edema throughout the course of rehabilitation following acute ankle injuries. SIGNIFICANCE: This could lead to better-informed decision making regarding readiness to return to activities and/or tailoring of rehabilitation activities to an individual's changing needs.


Subject(s)
Ankle , Wearable Electronic Devices , Edema/diagnosis , Electric Impedance , Humans , Spectrum Analysis
10.
Ann Biomed Eng ; 48(1): 225-235, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31350620

ABSTRACT

The longitudinal assessment of joint health is a long-standing issue in the management of musculoskeletal injuries. The acoustic emissions (AEs) produced by joint articulation could serve as a biomarker for joint health assessment, but their use has been limited by a lack of mechanistic understanding of their creation. In this paper, we investigate that mechanism using an injury model in human lower-limb cadavers, and relate AEs to joint kinematics. Using our custom joint sound recording system, we recorded the AEs from nine cadaver legs in four stages: at baseline, after a sham surgery, after a meniscus tear, and post-meniscectomy. We compare the resulting AEs using their b-values. We then compare joint anatomy/kinematics to the AEs using the X-ray reconstruction of moving morphology (XROMM) technique. After the meniscus tear the number and amplitude of the AE peaks greatly increased from baseline and sham (b-value = 1.33 ± 0.15; p < 0.05). The XROMM analysis showed a close correlation between the minimal inter-joint distances (0.251 ± 0.082 cm during extension, 0.265 ± .003 during flexion, at 145°) and a large increase in the AEs. This work provides key insight into the nature of joint AEs, and details a novel technique and analysis for recording and interpreting these biosignals.


Subject(s)
Acoustics , Knee Joint , Aged , Biomarkers , Cadaver , Humans , Lower Extremity , Middle Aged
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 1624-1627, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30440704

ABSTRACT

In this work, we detail the design and verification of a novel, 3D-printed, flexible knee brace with an embedded magnetic angle sensor for monitoring joint kinematics. The brace's torsional stiffness can be selectively modified by applying elastic bands of varying thickness. Through benchtop tests and finite element analysis simulations, we characterize the mechanical behavior of the knee brace and determine estimates of torsional stiffness across a range of band thicknesses. To demonstrate the ability to modulate knee joint loading in a real-world scenario, we report results of a pilot study in which able-bodied subjects wear the device during treadmill walking and seated flexion-extension tasks.


Subject(s)
Braces , Knee Joint , Printing, Three-Dimensional , Adult , Biomechanical Phenomena , Female , Humans , Male , Pilot Projects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...