Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36012515

ABSTRACT

The orphan insulin receptor-related receptor (IRR) encoded by insrr gene is the third member of the insulin receptor family, also including the insulin receptor (IR) and the insulin-like growth factor receptor (IGF-1R). IRR is the extracellular alkaline medium sensor. In mice, insrr is expressed only in small populations of cells in specific tissues, which contain extracorporeal liquids of extreme pH. In particular, IRR regulates the metabolic bicarbonate excess in the kidney. In contrast, the role of IRR during Xenopus laevis embryogenesis is unknown, although insrr is highly expressed in frog embryos. Here, we examined the insrr function during the Xenopus laevis early development by the morpholino-induced knockdown. We demonstrated that insrr downregulation leads to development retardation, which can be restored by the incubation of embryos in an alkaline medium. Using bulk RNA-seq of embryos at the middle neurula stage, we showed that insrr downregulation elicited a general shift of expression towards genes specifically expressed before and at the onset of gastrulation. At the same time, alkali treatment partially restored the expression of the neurula-specific genes. Thus, our results demonstrate the critical role of insrr in the regulation of the early development rate in Xenopus laevis.


Subject(s)
Embryonic Development , Receptor, Insulin , Xenopus Proteins , Animals , Embryonic Development/genetics , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Receptors, Somatomedin/metabolism , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Xenopus laevis/genetics , Xenopus laevis/metabolism
2.
Int J Mol Sci ; 20(6)2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30917575

ABSTRACT

ErbB2 is an oncogene receptor tyrosine kinase linked to breast cancer. It is a member of the epidermal growth factor receptor (EGFR) minifamily. ErbB2 is currently viewed as an orphan receptor since, by itself, it does not bind EGF-like ligands and can be activated only when overexpressed in malignant cells or complexed with ErbB3, another member of the EGFR minifamily. Here, we report that ErbB2 can be activated by extracellular application of mildly alkaline (pH 8⁻9) media to ErbB2-transfected cells. We also show that the activation of the ErbB2 receptor by alkali is dose-dependent and buffer-independent. The endogenous ErbB2 receptor of A431 cell line can also undergo alkali-dependent autophosphorylation. Thus, we describe a novel ligand-independent mechanism of ErbB2 receptor activation.


Subject(s)
Receptor, ErbB-2/metabolism , Alkalies/analysis , Alkalies/pharmacology , Cell Line, Tumor , Culture Media/chemistry , Culture Media/pharmacology , HEK293 Cells , Humans , Phosphorylation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...