Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 21(21): 6440-5, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21937229

ABSTRACT

The matrix metalloproteinase enzyme MMP-13 plays a key role in the degradation of type II collagen in cartilage and bone in osteoarthritis (OA). An effective MMP-13 inhibitor would provide a disease modifying therapy for the treatment of arthritis, although this goal still continues to elude the pharmaceutical industry due to issues with safety. Our efforts have resulted in the discovery of a series of hydroxamic acid inhibitors of MMP-13 that do not significantly inhibit MMP-2 (gelatinase-1). MMP-2 has been implicated in the musculoskeletal side effects resulting from pan-MMP inhibition due to findings from spontaneously occurring human MMP-2 deletions. Analysis of the SAR of hundreds of previously prepared hydroxamate based MMP inhibitors lead us to 2-naphthylsulfonamide substituted hydroxamates which exhibited modest selectivity for MMP-13 versus MMP-2. This Letter describes the lead optimization of 1 and identification of inhibitors exhibiting >100-fold selectivity for MMP-13 over MMP-2.


Subject(s)
Hydroxamic Acids/pharmacology , Matrix Metalloproteinase Inhibitors , Protease Inhibitors/pharmacology , Sulfonamides/chemistry , Crystallography, X-Ray , Hydroxamic Acids/chemistry , Models, Molecular , Protease Inhibitors/chemistry , Structure-Activity Relationship
2.
J Med Chem ; 52(11): 3523-38, 2009 Jun 11.
Article in English | MEDLINE | ID: mdl-19422229

ABSTRACT

The matrix metalloproteinase enzyme MMP-13 plays a key role in the degradation of type II collagen in cartilage and bone in osteoarthritis (OA). An effective MMP-13 inhibitor would therefore be a novel disease modifying therapy for the treatment of arthritis. Our efforts have resulted in the discovery of a series of carboxylic acid inhibitors of MMP-13 that do not significantly inhibit the related MMP-1 (collagenase-1) or tumor necrosis factor-alpha (TNF-alpha) converting enzyme (TACE). It has previously been suggested (but not proven) that inhibition of the latter two enzymes could lead to side effects. A promising carboxylic acid lead 9 was identified and a convergent synthesis developed. This paper describes the optimization of 9 and the identification of a compound 24f for further development. Compound 24f is a subnanomolar inhibitor of MMP-13 (IC(50) value 0.5 nM and K(i) of 0.19 nM) having no activity against MMP-1 or TACE (IC(50) of >10000 nM). Furthermore, in a rat model of MMP-13-induced cartilage degradation, 24f significantly reduced proteoglycan release following oral dosing at 30 mg/kg (75% inhibition, p < 0.05) and at 10 mg/kg (40% inhibition, p < 0.05).


Subject(s)
Cartilage/drug effects , Matrix Metalloproteinase Inhibitors , Piperidines/pharmacology , Protease Inhibitors/chemical synthesis , Sulfonamides/pharmacology , Animals , Cartilage/metabolism , Cattle , Collagen Type II/metabolism , Crystallography, X-Ray , Inhibitory Concentration 50 , Piperidines/administration & dosage , Piperidines/chemical synthesis , Piperidines/pharmacokinetics , Protease Inhibitors/administration & dosage , Protease Inhibitors/pharmacokinetics , Protease Inhibitors/pharmacology , Proteoglycans/metabolism , Rats , Structure-Activity Relationship , Sulfonamides/administration & dosage , Sulfonamides/chemical synthesis , Sulfonamides/pharmacokinetics
3.
Anal Biochem ; 328(2): 166-73, 2004 May 15.
Article in English | MEDLINE | ID: mdl-15113693

ABSTRACT

Matrix metalloproteinases (MMPs) and the related tumor necrosis factor converting enzyme (TACE) are involved in tissue remodeling, cell migration, and processing of signaling molecules, such as cytokines and adhesion molecules. Fluorescence-quenched peptide substrates have been widely used to quantitate the actual enzymatic activity of MMPs. However, the various MMPs have very different specific activities toward these substrates. This restricts their value for the determination of composite proteolytic activity of mixtures of metalloproteinases in biological fluids. The N-terminal elongation of the most widely used MMP substrate (FS-1) with a Lys to the sequence Mca-Lys-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH(2) (FS-6) yields a fluorogenic peptide with improved substrate properties. As compared to FS-1, the specificity constant (kcat/Km) of FS-6 for collagenases (MMP-1, MMP-8, MMP-13) and MT1-MMP (MMP-14) is increased two- to ninefold and threefold, respectively, while those for gelatinases and matrilysin remain equally high. Using high-performance liquid chromatography-fluorescence detection, MMP activity can be quantitated in the picomolar range. FS-6 shows up to twofold higher specificity constants (kcat/Km of 0.8x10(6)M(-1)s(-1)) for TACE, as compared to standard substrates Mca-PLAQAV-Dpa-RSSSAR-NH(2) and Dabcyl-LAQAVRSSSAR-EDANS. FS-6 is fully water soluble and thus allows measurement of metalloproteinase activity in tissue culture conditions, e.g., on the surface of viable cells in situ.


Subject(s)
Collagenases/metabolism , Fluorescent Dyes/metabolism , Metalloendopeptidases/metabolism , Oligopeptides/analysis , ADAM Proteins , ADAM17 Protein , Binding Sites , Cells, Cultured , Culture Media, Conditioned/chemistry , Female , Fluorescent Dyes/chemistry , Humans , Hydrolysis , Kinetics , Matrix Metalloproteinase Inhibitors , Matrix Metalloproteinases/analysis , Matrix Metalloproteinases/metabolism , Oligopeptides/chemistry , Oligopeptides/metabolism , Recombinant Proteins/analysis , Recombinant Proteins/antagonists & inhibitors , Substrate Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...