Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Sci Immunol ; 2(9)2017 Mar.
Article in English | MEDLINE | ID: mdl-28707003

ABSTRACT

Liver-resident CD8+ T cells are highly motile cells that patrol the vasculature and provide protection against liver pathogens. A key question is: how can these liver CD8+ T cells be simultaneously present in the circulation and tissue-resident? Because liver-resident T cells do not express CD103 - a key integrin for T cell residence in epithelial tissues - we investigated other candidate adhesion molecules. Using intra-vital imaging we found that CD8+ T cell patrolling in the hepatic sinusoids is dependent upon LFA-1-ICAM-1 interactions. Interestingly, liver-resident CD8+ T cells up-regulate LFA-1 compared to effector-memory cells, presumably to facilitate this behavior. Finally, we found that LFA-1 deficient CD8+ T cells failed to form substantial liver-resident memory populations following Plasmodium or LCMV immunization. Collectively, our results demonstrate that it is adhesion through LFA-1 that allows liver-resident memory CD8+ T cells to patrol and remain in the hepatic sinusoids.

2.
Adv Space Res ; 27(9): 1587-92, 2001.
Article in English | MEDLINE | ID: mdl-11695440

ABSTRACT

The process of biotic turnover in a closed ecological system (CES) with an external energy flow was analyzed by mathematical modeling of the biotic cycle formation. The formation of hierarchical structure in model CESs is governed by energy criteria. Energy flow through the ecosystem increases when a predator is introduced into a "producer-reducer" system at steady state. Analysis of the model shows that under certain conditions the presence of the primary predator with its high mineralization ability accelerates the biotic turnover measured by primary production. We, therefore, conclude that for every system it is possible to find a suitable predator able to provide the system with a higher biotic turnover rate and energy consumption. Grant numbers: 99-04-96017/2000.


Subject(s)
Biological Evolution , Computer Simulation , Ecological Systems, Closed , Ecosystem , Food Chain , Animals , Daphnia , Energy Metabolism , Eukaryota , Models, Biological , Plankton , Poecilia
3.
Biofizika ; 45(5): 908-14, 2000.
Article in Russian | MEDLINE | ID: mdl-11094722

ABSTRACT

A structural approach to studying the regularities of the population dynamics of unstable recombinant bacterial strains in a chemostat was elaborated. The approach is based on the mathematical modeling of cell distribution in a population with different numbers of plasmid copies. The effect of decreased selective preference of plasmidless variants of the recombinant strain in the chemostat, which is related to a decrease in the number of plasmid copies in cells upon long-term incubation was analyzed. It is shown that the time of half-elimination of plasmids from the bacterial population in the steady state in the chemostat T1/2 does not depend on the maximum number of plasmid copies in cells N but is determined only by the mean time of generation g and the probability of the loss of one plasmid copy tau. The dependence of the preference of bacterial plasmidless variants on the efficiency of expression of genes cloned into plasmids in chemostat was analyzed using the recombinant strain E. coli Z905, whose plasmids pPHL-7 contain cloned genes for the luminescence system of marine luminescing bacteria Photobacterium leiognathi.


Subject(s)
Escherichia coli/growth & development , Models, Theoretical , Plasmids , Bioreactors , Escherichia coli/genetics , Fermentation , Photobacterium/genetics
5.
Adv Space Res ; 24(3): 335-41, 1999.
Article in English | MEDLINE | ID: mdl-11542542

ABSTRACT

The possibility of introducing genetically engineered microorganisms (GEM) into simple biotic cycles of laboratory water microcosms was investigated. The survival of the recombinant strain Escherichia coli Z905 (Apr, Lux+) in microcosms depends on the type of model ecosystems. During the absence of algae blooming in the model ecosystem, the part of plasmid-containing cells E. coli decreased fast, and the structure of the plasmid was also modified. In conditions of algae blooming (Ankistrodesmus sp.) an almost total maintenance of plasmid-containing cells was observed in E. coli population. A mathematics model of GEM's behavior in water ecosystems with different level of complexity has been formulated. Mechanisms causing the difference in luminescent exhibition of different species are discussed, and attempts are made to forecast the GEM's behavior in water ecosystems.


Subject(s)
Ecological Systems, Closed , Escherichia coli/growth & development , Genetic Engineering , Models, Biological , Plasmids , Water Microbiology , Animals , Biomass , Colony Count, Microbial , Escherichia coli/genetics , Eukaryota , Feasibility Studies , Genes, Bacterial , Photobacterium/genetics , Time Factors , Yeasts
SELECTION OF CITATIONS
SEARCH DETAIL
...