Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Parasitol Drugs Drug Resist ; 23: 120-129, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38043188

ABSTRACT

Toxoplasma gondii is an obligate intracellular parasite in the phylum Apicomplexa that causes toxoplasmosis in humans and animals worldwide. Despite its prevalence, there is currently no effective vaccine or treatment for chronic infection. Although there are therapies against the acute stage, prolonged use is toxic and poorly tolerated. This study aims to explore the potential of repurposing topotecan and 10-hydroxycamptothecin (HCPT) as drugs producing double strand breaks (DSBs) in T. gondii. DSBs are mainly repaired by Homologous Recombination Repair (HRR) and Non-Homologous End Joining (NHEJ). Two T. gondii strains, RHΔHXGPRT and RHΔKU80, were used to compare the drug's effects on parasites. RHΔHXGPRT parasites may use both HRR and NHEJ pathways but RHΔKU80 lacks the KU80 protein needed for NHEJ, leaving only the HRR pathway. Here we demonstrate that topotecan and HCPT, both topoisomerase I venoms, affected parasite replication in a concentration-dependent manner. Moreover, variations in fluorescence intensity measurements for the H2A.X phosphorylation mark (γH2A.X), an indicator of DNA damage, were observed in intracellular parasites under drug treatment conditions. Interestingly, intracellular replicative parasites without drug treatment show a strong positive staining for γH2A.X, suggesting inherent DNA damage. Extracellular (non-replicating) parasites did not exhibit γH2A.X staining, indicating that the basal level of DNA damage is likely to be associated with replicative stress. A high rate of DNA replication stress possibly prompted the evolution of an efficient repair machinery in the parasite, making it an attractive target. Our findings show that topoisomerase 1 venoms are effective antiparasitics blocking T. gondii replication.


Subject(s)
Parasites , Toxoplasma , Humans , Animals , Toxoplasma/genetics , Topotecan/pharmacology , Topotecan/metabolism , DNA Repair , DNA Damage
2.
Parasitol Res ; 123(1): 69, 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38135783

ABSTRACT

Toxoplasmosis is a worldwide zoonosis caused by the protozoan parasite Toxoplasma gondii. Although this infection is generally asymptomatic in immunocompetent individuals, it can cause serious clinical manifestations in newborns with congenital infection or in immunocompromised patients. As current treatments are not always well tolerated, there is an urgent need to find new drugs against human toxoplasmosis. Drug repurposing has gained considerable momentum in the last decade and is a particularly attractive approach for the search of therapeutic alternatives to treat rare and neglected diseases. Thus, in this study, we investigated the antiproliferative effect of several repurposed drugs. Of these, clofazimine and triclabendazole displayed a higher selectivity against T. gondii, affecting its replication. Furthermore, both compounds inhibited spermine incorporation into the parasite, which is necessary for the formation of other polyamines. The data reported here indicate that clofazimine and triclabendazole could be used for the treatment of human toxoplasmosis and confirms that drug repurposing is an excellent strategy to find new therapeutic targets of intervention.


Subject(s)
Toxoplasma , Toxoplasmosis , Humans , Infant, Newborn , Triclabendazole/pharmacology , Spermine , Clofazimine/pharmacology , Clofazimine/therapeutic use , Toxoplasmosis/drug therapy , Toxoplasmosis/parasitology
3.
Parasitol Res ; 122(12): 3257-3263, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37804422

ABSTRACT

Neosporosis is the major cause of abortion and reproductive failures in cattle, leading to significant economic losses. In this study, we evaluated the impact of Neospora caninum infection on oxidative stress (OS) markers and local cytokine mRNA expression at the placenta, as well as its effect on the progesterone (P4) serum levels and systemic cytokine profile in a pregnant mouse model. Infected pregnant mice (NC-1 group) showed increased percentages of fetal losses and IFN-γ serum levels, decreased serum progesterone, increased placental mRNA expression levels of both Th1-type (IFN-γ and TNF-α) and Th2-type (IL-4) cytokines, and inhibited expression of TGF-ß1 (Treg) compare to control dams (CONTROL group). In addition, lipid peroxidation and ROS were increased, whereas the antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT) activities were modified in the placentae of infected mice compared to control mice. These findings demonstrate that multiple factors, including placental OS, are involved in fetal losses associated with N. caninum infection in mice, thus OS contribution to the placental physiopathology of neosporosis in other hosts must not be ruled out.


Subject(s)
Cattle Diseases , Coccidiosis , Neospora , Pregnancy , Female , Animals , Cattle , Mice , Placenta , Cytokines/metabolism , Neospora/genetics , Progesterone/metabolism , Oxidative Stress , RNA, Messenger/metabolism , Coccidiosis/veterinary , Cattle Diseases/genetics
4.
Biochim Biophys Acta Gene Regul Mech ; 1866(3): 194943, 2023 09.
Article in English | MEDLINE | ID: mdl-37217032

ABSTRACT

Through regulation of DNA packaging, histone proteins are fundamental to a wide array of biological processes. A variety of post-translational modifications (PTMs), including acetylation, constitute a proposed histone code that is interpreted by "reader" proteins to modulate chromatin structure. Canonical histones can be replaced with variant versions that add an additional layer of regulatory complexity. The protozoan parasite Toxoplasma gondii is unique among eukaryotes in possessing a novel variant of H2B designated H2B.Z. The combination of PTMs and the use of histone variants are important for gene regulation in T. gondii, offering new targets for drug development. In this work, T. gondii parasites were generated in which the 5 N-terminal acetylatable lysines in H2B.Z were mutated to either alanine (c-Myc-A) or arginine (c-Myc-R). The c-Myc-A mutant displayed no phenotype over than a mild defect in its ability to kill mice. The c-Myc-R mutant presented an impaired ability to grow and an increase in differentiation to latent bradyzoites. The c-Myc-R mutant was also more sensitive to DNA damage, displayed no virulence in mice, and provided protective immunity against future infection. While nucleosome composition was unaltered, key genes were abnormally expressed during in vitro bradyzoite differentiation. Our results show that regulation of the N-terminal positive charge patch of H2B.Z is important for these processes. We also show that acetylated N-terminal H2B.Z interacts with some unique proteins compared to its unacetylated counterpart; the acetylated peptide pulled down proteins associated with chromosome maintenance/segregation and cell cycle, suggesting a link between H2B.Z acetylation status and mitosis.


Subject(s)
Histones , Toxoplasma , Animals , Mice , Histones/metabolism , Toxoplasma/genetics , Acetylation , Nucleosomes/metabolism , Protein Processing, Post-Translational
5.
bioRxiv ; 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36824796

ABSTRACT

Through regulation of DNA packaging, histone proteins are fundamental to a wide array of biological processes. A variety of post-translational modifications (PTMs), including acetylation, constitute a proposed histone code that is interpreted by "reader" proteins to modulate chromatin structure. Canonical histones can be replaced with variant versions that add an additional layer of regulatory complexity. The protozoan parasite Toxoplasma gondii is unique among eukaryotes in possessing a novel variant of H2B designated H2B.Z. The combination of PTMs and the use of histone variants is important for gene regulation in T. gondii, offering new targets for drug development. In this work, T. gondii parasites were generated in which the 5 N-terminal acetylatable lysines in H2B.Z were mutated to either alanine (c-Myc-A) or arginine (c-Myc-R). c-Myc-A mutant only displayed a mild effect in its ability to kill mice. c-Myc-R mutant presented an impaired ability to grow and an increase in differentiation to latent bradyzoites. This mutant line was also more sensitive to DNA damage, displayed no virulence in mice, and provided protective immunity against future infection. While nucleosome composition was unaltered, key genes were abnormally expressed during in vitro bradyzoite differentiation. Our results show that the N-terminal positive charge patch of H2B.Z is important for these procceses. Pull down assays with acetylated N-terminal H2B.Z peptide and unacetylated one retrieved common and differential interactors. Acetylated peptide pulled down proteins associated with chromosome maintenance/segregation and cell cycle, opening the question of a possible link between H2B.Z acetylation status and mitosis.

6.
Diagn Microbiol Infect Dis ; 102(3): 115608, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34942587

ABSTRACT

The performance of Toxoplasma rGra8, rMic1, and the chimeric rGra4-Gra7 antigens for early congenital toxoplasmosis (CT) diagnosis was evaluated. Sera from CT patients showed high IgG reactivity to rMic1, rGra8, and rGra4-Gra7. The seroreactivity of samples from uninfected infants was lost within 2 months of age.


Subject(s)
Toxoplasma , Toxoplasmosis, Congenital , Toxoplasmosis , Antibodies, Protozoan , Antigens, Protozoan/genetics , Early Diagnosis , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G , Infant , Sensitivity and Specificity , Toxoplasma/genetics , Toxoplasmosis/diagnosis , Toxoplasmosis, Congenital/diagnosis
7.
BMC Res Notes ; 14(1): 19, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33413578

ABSTRACT

OBJECTIVE: Resveratrol (RSV) is a multitarget drug that has demonstrated activity against Toxoplasma gondii in macrophage and human foreskin fibroblast (HFF) cell line infection models. However, the mechanism of action of RSV has not yet been determined. Thus, with the aim of identifying a possible mechanism of the anti-T. gondii activity of this compound, we analyzed the effects of RSV on histones H3 and H4 lysine 16 acetylation (H4K16). We also analyzed RSV-induced DNA damage to intracellular tachyzoites by using the DNA damage marker phosphorylated histone H2A.X (γH2AX). RESULTS: RSV inhibited intracellular T. gondii tachyzoite growth at concentrations below the toxic threshold for host cells. The IC50 value after 24 h of treatment was 53 µM. RSV induced a reduction in H4K16 acetylation (H4K16ac), a marker associated with transcription, DNA replication and homologous recombination repair. A similar deacetylation effect was observed on histone H3. RSV also increased T. gondii H2A.X phosphorylation at the SQE motif (termed γH2A.X), which is a DNA damage-associated posttranslational modification. Our findings suggest a possible link between RSV and DNA damage or repair processes that is possibly associated with DNA replication stress.


Subject(s)
Histones , Toxoplasma , Acetylation , Histones/metabolism , Humans , Phosphorylation , Resveratrol/pharmacology
8.
Acta Trop ; 198: 105094, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31323195

ABSTRACT

Neospora caninum is the etiological agent of neosporosis, a worldwide infectious disease recognized as the major cause of abortions and reproductive failures in livestock, responsible for significant economic losses in cattle industries. Currently, there are not cost-effective control options for this pathology, and the development of a vaccine involving new and integrated approaches is highly recommended. In this study, we evaluated the immunogenic and protective efficacy, as well as the potential DIVA (Differentiation of Infected from Vaccinated Animals) character of a recombinant subunit vaccine composed by the major surface antigen from N. caninum (NcSAG1) and the carrier/adjuvant heat shock protein 81.2 from Arabidopsis thaliana (AtHsp81.2) in a mouse model of congenital neosporosis. BALB/c female mice were intraperitoneal (i.p.) immunized with a mixture of equimolar quantities of rNcSAG1 and rAtHSP81.2 or each protein alone (rNcSAG1 or rAtHsp81.2). The vaccine containing a mixture of rNcSAG1 and rAtHsp81.2 significantly enhanced the production of specific anti-rNcSAG1 total IgG (tIgG), IgG1 and IgG2a antibodies in immunized mice when compared to control groups (non-vaccinated and rAtHsp81.2 immunized mice) as well as to the group of mice immunized only with the antigen (rNcSAG1). In addition, partial protection against vertical transmission and improvement of the offspring survival time was observed in this group. On the other hand, rAtHsp81.2 induced the production of specific anti-rAtHsp81.2 tIgG, allowing us to differentiate vaccinated from infected mice. Despite further experiments have to be made in cattle to test the capability of this vaccine formulation to differentiate vaccinated from infected animals in the field, our results suggest that the formulation composed by rNcSAG1 and rAtHsp81.2 could serve as a basis for the development of a new vaccine approach against bovine neosporosis.


Subject(s)
Antigens, Protozoan/immunology , Coccidiosis/prevention & control , Infectious Disease Transmission, Vertical/prevention & control , Pregnancy Complications, Parasitic/prevention & control , Protozoan Vaccines/immunology , Animals , Antibodies, Protozoan , Coccidiosis/parasitology , Female , Immunoglobulin G , Mice , Mice, Inbred BALB C , Neospora/immunology , Pregnancy , Vaccination , Vaccines, Synthetic/immunology
9.
Article in English | MEDLINE | ID: mdl-30815397

ABSTRACT

Toxoplasma gondii is an apicomplexan protozoan parasite with a complex life cycle composed of multiple stages that infect mammals and birds. Tachyzoites rapidly replicate within host cells to produce acute infection during which the parasite disseminates to tissues and organs. Highly replicative cells are subject to Double Strand Breaks (DSBs) by replication fork collapse and ATM, a member of the phosphatidylinositol 3-kinase (PI3K) family, is a key factor that initiates DNA repair and activates cell cycle checkpoints. Here we demonstrate that the treatment of intracellular tachyzoites with the PI3K inhibitor caffeine or ATM kinase-inhibitor KU-55933 affects parasite replication rate in a dose-dependent manner. KU-55933 affects intracellular tachyzoite growth and induces G1-phase arrest. Addition of KU-55933 to extracellular tachyzoites also leads to a significant reduction of tachyzoite replication upon infection of host cells. ATM kinase phosphorylates H2A.X (γH2AX) to promote DSB damage repair. The level of γH2AX increases in tachyzoites treated with camptothecin (CPT), a drug that generates fork collapse, but this increase was not observed when co-administered with KU-55933. These findings support that KU-55933 is affecting the Toxoplasma ATM-like kinase (TgATM). The combination of KU-55933 and other DNA damaging agents such as methyl methane sulfonate (MMS) and CPT produce a synergic effect, suggesting that TgATM kinase inhibition sensitizes the parasite to damaged DNA. By contrast, hydroxyurea (HU) did not further inhibit tachyzoite replication when combined with KU-55933.


Subject(s)
Antiprotozoal Agents/pharmacology , Morpholines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrones/pharmacology , Toxoplasma/drug effects , Toxoplasma/growth & development , Drug Synergism
10.
Vet Immunol Immunopathol ; 162(3-4): 142-53, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25467890

ABSTRACT

The aim of the present study was to evaluate the immunogenicity and protective efficacy of rNcSAG1, rNcHSP20 and rNcGRA7 recombinant proteins formulated with immune stimulating complexes (ISCOMs) in pregnant heifers against vertical transmission of Neospora caninum. Twelve pregnant heifers were divided into 3 groups of 4 heifers each, receiving different formulations before mating. Immunogens were administered twice subcutaneously: group A animals were inoculated with three recombinant proteins (rNcSAG1, rNcHSP20, rNcGRA7) formulated with ISCOMs; group B animals received ISCOM-MATRIX (without antigen) and group C received sterile phosphate-buffered saline (PBS) only. The recombinant proteins were expressed in Escherichia coli and purified nickel resin. All groups were intravenously challenged with the NC-1 strain of N. caninum at Day 70 of gestation and dams slaughtered at week 17 of the experiment. Heifers from group A developed specific antibodies against rNcSAG1, rNcHSP20 and rNcGRA7 prior to the challenge. Following immunization, an statistically significant increase of antibodies against rNcSAG1 and rNcHSP20 in all animals of group A was detected compared to animals in groups B and C at weeks 5, 13 and 16 (P<0.001). Levels of antibodies against rNcGRA7 were statistical higher in group A animals when compared with groups B and C at weeks 5 and 16 (P>0.001). There were no differences in IFN-γ production among the experimental groups at any time point (P>0.05). Transplacental transmission was determined in all foetuses of groups A, B and C by Western blot, immunohistochemistry and nested PCR. This work showed that rNcSAG1, rNcHSP20 and rNcGRA7 proteins while immunogenic in cattle failed to prevent the foetal infection in pregnant cattle challenged at Day 70 of gestation.


Subject(s)
Cattle Diseases/parasitology , Coccidiosis/veterinary , Infectious Disease Transmission, Vertical/veterinary , Neospora/immunology , Protozoan Vaccines/immunology , Vaccines, Synthetic/immunology , Animals , Antibodies, Protozoan/blood , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Blotting, Western/veterinary , Cattle , Cattle Diseases/immunology , Cattle Diseases/transmission , Coccidiosis/immunology , Coccidiosis/parasitology , Coccidiosis/transmission , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , Female , Fetus , HSP20 Heat-Shock Proteins/genetics , HSP20 Heat-Shock Proteins/immunology , ISCOMs/pharmacology , Immunohistochemistry/veterinary , Infectious Disease Transmission, Vertical/prevention & control , Polymerase Chain Reaction/veterinary , Pregnancy , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Random Allocation , Statistics, Nonparametric , Vaccines, Synthetic/standards
11.
Mol Biochem Parasitol ; 197(1-2): 36-42, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25286383

ABSTRACT

Histone H2Ba of Toxoplasma gondii was expressed as recombinant protein (rH2Ba) and used to generate antibody in mouse that is highly specific. Antibody recognizing rH2Ba detects a single band in tachyzoite lysate of the expected molecular weight (12kDa). By indirect immunofluorescence (IFA) in in vitro grown tachyzoites and bradyzoites, the signal was detected only in the parasite nucleus. The nucleosome composition of H2Ba was determined through co-immunoprecipitation assays. H2Ba was detected in the same immunocomplex as H2A.X, but not with H2A.Z. Through chromatin immunoprecipitation (ChIP) assays and qPCR, it was observed that H2Ba is preferentially located at promoters of inactive genes and silent regions, accompanying H2A.X and opposed to H2A.Z/H2B.Z dimers.


Subject(s)
Genome, Protozoan , Histones/genetics , Toxoplasma/genetics , Antibodies, Monoclonal/immunology , Chromatin Immunoprecipitation , Histones/chemistry , Histones/immunology , Histones/metabolism , Models, Biological , Nucleosomes/metabolism , Protein Multimerization , Protein Transport , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism
12.
BMC Res Notes ; 6: 193, 2013 May 10.
Article in English | MEDLINE | ID: mdl-23663567

ABSTRACT

BACKGROUND: Toxoplasmosis is a worldwide infection caused by the protozoan parasite Toxoplasma gondii, which causes chorioretinitis and neurological defects in congenitally infected newborns or immunodeficient patients. The efficacy of the current treatment is limited, primarily by serious host toxicity. In recent years, research has focused on the development of new drugs against T. gondii. ß-Carbolines (ßCs), such as harmane, norharmane and harmine, are a group of naturally occurring alkaloids that show microbicidal activity. In this work, harmane, norharmane and harmine were tested against T. gondii. FINDINGS: The treatment of extracellular tachyzoites with harmane, norharmane and harmine showed a 2.5 to 3.5-fold decrease in the invasion rates at doses of 40 µM (harmane and harmine) and 2.5 µM (norharmane) compared with the untreated parasites. Furthermore, an effect on the replication rate could also be observed with a decrease of 1 (harmane) and 2 (norharmane and harmine) division rounds at doses of 5 to 12.5 µM. In addition, the treated parasites presented either delayed or no monolayer lysis compared with the untreated parasites. CONCLUSIONS: The three ßC alkaloids studied (norharmane, harmane and harmine) exhibit anti-T. gondii effects as evidenced by the partial inhibition of parasite invasion and replication. A dose-response effect was observed at a relatively low drug concentration (< 40 µM), at which no cytotoxic effect was observed on the host cell line (Vero).


Subject(s)
Alkaloids/pharmacology , Carbolines/pharmacology , Toxoplasma/drug effects , Toxoplasmosis/drug therapy , Alkaloids/therapeutic use , Animals , Carbolines/therapeutic use , In Vitro Techniques , Toxoplasma/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...