Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 11: 1293909, 2024.
Article in English | MEDLINE | ID: mdl-38379539

ABSTRACT

Introduction: AlmegaPL® is an oil rich in polar-lipid (> 15% w/w) derived from the microalga Nannochloropsis, that contains exclusively eicosapentaenoic acid (EPA > 25% w/w), without the DHA that is present in all other natural sources of omega-3. Previous findings from a randomized controlled clinical trial demonstrated the ability of AlmegaPL® supplementation to reduce cholesterol levels. Methods: In this post-market cohort study, we built upon previous findings and targeted the actual end-users of the supplement. Participants were recruited from a new subscriber database of AlmegaPL® capsules (1000-1100 mg/day) to capture the complexity of real-world clinical and consumer settings. Changes in circulating triglycerides (TG), remnant cholesterol (RC), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), total cholesterol (TC), high-sensitivity C-reactive protein (hs-CRP), glucose and glycated hemoglobin (HbA1c) were monitored at baseline, Month 3, and Month 6 of supplementation using the at-home Baseline Heart Health Testing Kit by Imaware® (Houston, TX, USA). Results: Participants, who had, on average, normal TG level at baseline (1.62 ± 0.60 mmol/L), experienced a significant and progressive decrease in TG at Month 3 (8.0%; -0.13 ± 0.59 mmol/L; p < 0.001) and Month 6 (14.2%; -0.23 ± 0.64 mmol/L; p < 0.001) (primary outcome). Furthermore, after 6 months of supplementation, TC and non-HDL-cholesterol decreased by 5.0% (-0.26 ± 0.98 mmol/L; p < 0.001) and 5.5% (-0.21 ± 0.86 mmol/L; p < 0.001) respectively, primarily driven by a 14.9% reduction in RC (-0.11 ± 0.29 mmol/L; p < 0.001). Discussion: Consistent with our previous clinical trial, the decrease in RC was not coupled to an increase in LDL, which seems to be a benefit associated with EPA-only based formulations. In addition, this study demonstrated the AlmegaPL® capacity to maintain already healthy TG levels by further inducing a 14.9% decrease. Collectively, these findings highlight AlmegaPL® uniqueness as a natural over-the-counter option for EPA-only polar lipid that appears particularly effective in maintaining blood lipid levels in a generally healthy, normolipidemic population. Clinical trial registration: https://clinicaltrials.gov/, identifier NCT05267301.

3.
Microbiol Resour Announc ; 11(12): e0092122, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36377884

ABSTRACT

Species of Nannochloropsis are single-celled Stramenopiles commonly used in microalgae-based technologies for the manufacturing of bioproducts. Nannochloropsis oceanica QH25 was isolated from an algal cultivation pond located in Imperial, Texas (USA). We used PacBio continuous long read (CLR) sequencing to produce a highly contiguous 29.34 Mb genome.

4.
Nutrients ; 12(6)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32585854

ABSTRACT

The aim of this trial is to assess the effect of Almega®PL on improving the Omega-3 Index, cardio-metabolic parameters, and other biomarkers in generally healthy individuals. The benefits of long-chain omega-3 fatty acids for cardiovascular health are primarily built upon mixtures of docosahexaenoic (DHA) and eicosapentaenoic acids (EPA). Highly purified EPA therapy has proven to be particularly effective in the treatment of cardiovascular disease, but less is known about the benefits of EPA-only supplementation for the general healthy population. Almega®PL is a polar rich oil (>15%) derived from the microalga Nannochloropsis that contains EPA (>25%) with no DHA. Participants (n = 120) were given a capsule of 1 g/day of either Almega®PL or placebo for 12 weeks. Differences in the Omega-3 Index, cardiometabolic markers, and other general health indicators were measured at the baseline, six, and 12 weeks. Compared to the placebo group, Almega®PL supplementation significantly increased the Omega-3 Index and EPA concentration from 4.96 ± 0.90 and 0.82 ± 0.37% at the baseline to 5.75 ± 0.90 and 1.27 ± 0.36 at week 12, respectively. Very-low-density lipoprotein cholesterol (VLDL) decreased by 25%, which resulted in a significant decrease in total cholesterol compared to the placebo. Interestingly, the decrease in VLDL was not associated with an increase in LDL, which seems to be a benefit associated with EPA-only based formulations. Collectively, these results show that Almega®PL provides a natural EPA-only option to increase EPA and manage cholesterol levels in the general population.


Subject(s)
Eicosapentaenoic Acid , Microalgae/chemistry , Stramenopiles/chemistry , Adult , Cholesterol, LDL/blood , Cholesterol, VLDL/blood , Dietary Supplements , Double-Blind Method , Eicosapentaenoic Acid/administration & dosage , Eicosapentaenoic Acid/blood , Fatty Acids, Omega-3/blood , Female , Humans , Male , Middle Aged , Triglycerides/blood
5.
Protist ; 170(2): 209-232, 2019 04.
Article in English | MEDLINE | ID: mdl-31100647

ABSTRACT

Strain HS-399 was isolated from a mangrove swamp in Biscayne Bay (Florida, USA) and selected for its capacity to accumulate lipids (84.0±1.0% DW), particularly docosahexaenoic acid (DHA; 22:6 n-3) (28.3±0.1% DW). Molecular phylogenetic analysis demonstrated that the new organism belonged to the genus Aurantiochytrium, and when the whole nuclear genome was blasted against the type species (and only described species), A. limacinum SR21, there was a 5.38% difference at the protein level. We described our new organism as Aurantiochytrium acetophilum sp. nov. (Thraustochytriaceae, Thraustochytriales) using light microscopy, electron microscopy, substrate assimilation, biochemical composition and nuclear genomic data. We found some characteristics of biotechnological relevance that were not previously described in this family. First, strain HS-399 of A. acetophilum was extremely tolerant to acetate toxicity, and it used this substrate as a sole carbon source. Second, we observed putative gametes that fused together to form a zygote. Zygote fate and the life stage with meiosis were not determined; however, we found several meiosis genes in the genome, further supporting the possibility of breeding for these industrially relevant organisms.


Subject(s)
Genome, Protozoan , Phylogeny , Stramenopiles/classification , Stramenopiles/genetics , Reproduction , Species Specificity , Stramenopiles/physiology
6.
Front Microbiol ; 7: 848, 2016.
Article in English | MEDLINE | ID: mdl-27379027

ABSTRACT

The predatory bacterium, Vampirovibrio chlorellavorus, can destroy a Chlorella culture in just a few days, rendering an otherwise robust algal crop into a discolored suspension of empty cell walls. Chlorella is used as a benchmark for open pond cultivation due to its fast growth. In nature, V. chlorellavorus plays an ecological role by controlling this widespread terrestrial and freshwater microalga, but it can have a devastating effect when it attacks large commercial ponds. We discovered that V. chlorellavorus was associated with the collapse of four pilot commercial-scale (130,000 L volume) open-pond reactors. Routine microscopy revealed the distinctive pattern of V. chlorellavorus attachment to the algal cells, followed by algal cell clumping, culture discoloration and ultimately, growth decline. The "crash" of the algal culture coincided with increasing proportions of 16s rRNA sequencing reads assigned to V. chlorellavorus. We designed a qPCR assay to predict an impending culture crash and developed a novel treatment to control the bacterium. We found that (1) Chlorella growth was not affected by a 15 min exposure to pH 3.5 in the presence of 0.5 g/L acetate, when titrated with hydrochloric acid and (2) this treatment had a bactericidal effect on the culture (2-log decrease in aerobic counts). Therefore, when qPCR results indicated a rise in V. chlorellavorus amplicons, we found that the pH-shock treatment prevented the culture crash and doubled the productive longevity of the culture. Furthermore, the treatment could be repeatedly applied to the same culture, at the beginning of at least two sequential batch cycles. In this case, the treatment was applied preventively, further increasing the longevity of the open pond culture. In summary, the treatment reversed the infection of V. chlorellavorus as confirmed by observations of bacterial attachment to Chlorella cells and by detection of V. chlorellavorus by 16s rRNA sequencing and qPCR assay. The pH-shock treatment is highly selective against prokaryotes, and it is a cost-effective treatment that can be used throughout the scale up and production process. To our knowledge, the treatment described here is the first effective control of V. chlorellavorus and will be an important tool for the microalgal industry and biofuel research.

SELECTION OF CITATIONS
SEARCH DETAIL
...