Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Int J Chron Obstruct Pulmon Dis ; 19: 1479-1489, 2024.
Article in English | MEDLINE | ID: mdl-38948910

ABSTRACT

Objective: Given the established impact of exercise in reducing arterial stiffness and the potential for intermittent hypoxia to induce its elevation, this study aims to understand how oxygen desaturation during exercise affects arterial stiffness in individuals with COPD. Methods: We enrolled patients with stable COPD from China-Japan Friendship Hospital from November 2022 to June 2023. The 6-minute walk test (6-MWT) was performed with continuous blood oxygen saturation (SpO2) monitoring in these patients. The patients were classified into three groups: non-exercise induced desaturation (EID), mild-EID and severe-EID, according to the changes in SpO2 during the 6-MWT. The Cardio-Ankle Vascular Index (CAVI) and the change in CAVI (ΔCAVI, calculated as CAVI before 6MWT minus CAVI after the 6MWT) were measured before and immediately after the 6MWT to assess the acute effects of exercise on arterial stiffness. GOLD Stage, pulmonary function, and other functional outcomes were also measured in this study. Results: A total of 37 patients with stable COPD underwent evaluation for changes in CAVI (ΔCAVI) before and after the 6-MWT. Stratification based on revealed three subgroups: non-EID (n=12), mild-EID (n=15), and severe-EID (n=10). The ΔCAVI values was -0.53 (-0.95 to -0.31) in non-EID group, -0.20 (-1.45 to 0.50) in mild-EID group, 0.6 (0.08 to 0.73) in severe-EID group. Parametric tests indicated significant differences in ΔCAVI among EID groups (p = 0.005). Pairwise comparisons demonstrated significant distinctions between mild-EID and severe-EID groups, as well as between non-EID and severe-EID groups (p = 0.048 and p = 0.003, respectively). Multivariable analysis, adjusting for age, sex, GOLD stage, diffusion capacity, and blood pressure, identified severe-EID as an independent factor associated with ΔCAVI (B = 1.118, p = 0.038). Conclusion: Patients with COPD and severe-EID may experience worsening arterial stiffness even during short periods of exercise.


Subject(s)
Exercise Tolerance , Lung , Oxygen Saturation , Pulmonary Disease, Chronic Obstructive , Vascular Stiffness , Walk Test , Humans , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/diagnosis , Male , Female , Aged , Middle Aged , Lung/physiopathology , Time Factors , Cardio Ankle Vascular Index , China
2.
Article in English | MEDLINE | ID: mdl-38907805

ABSTRACT

PURPOSE: This study aimed to investigate the changes in serum Anti-Müllerian Hormone (AMH) levels, sex hormone levels, follicle-stimulating hormone (FSH)/luteinizing hormone (LH) ratio in patients with celiac disease (CeD), and their correlation with clinical characteristics and nutrient levels. METHODS: This cross-sectional study collected clinical and biochemical data from a total of 67 females diagnosed with CeD and 67 healthy females within the reproductive age range of 18-44 years. The study was conducted at a tertiary hospital between September 2016 and January 2024. Both groups underwent comprehensive clinical and laboratory assessments. Serum levels of AMH and sex hormones were quantified using chemiluminescence immunoassay, and their associations with CeD clinical features and nutrient levels were thoroughly analyzed. RESULTS: The study included 67 patients and 67 controls with a mean age of 36.7±7.6 years. No statistically significant differences were found between the two groups in mean age, BMI, FSH, LH, E2, P levels, FSH/LH, menstrual irregularities, abortions history, parity, and gravidity (all P>0.05). However, AMH, T, FER, FA, Zn, and Se levels were significantly lower, and PRL levels were higher in the CeD group (all P<0.05). Spearman's correlation analysis showed that AMH levels were negatively correlated with age, tTG level, disease duration, and Marsh grading (P<0.05). CONCLUSIONS: This study highlights the association between impaired ovarian function in CeD patients and disease severity and nutrient levels. Early detection and intervention for ovarian function abnormalities are imperative to enhance fertility potential in CeD patients.

3.
Curr Med Res Opin ; 40(2): 217-227, 2024 02.
Article in English | MEDLINE | ID: mdl-38008952

ABSTRACT

BACKGROUND: Studies demonstrate that people who have been infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, have experienced cognitive dysfunction, including working memory impairment, executive dysfunction, and decreased concentration. This review aimed to explore the incidence of working memory impairment and possible concomitant symptoms in the acute phase (< 3 months) and chronic phase (> 6 months) of COVID-19. METHODS: We conducted a systematic review of the following databases for inception: MEDLINE via Pub Med, Cochrane EMBASE, and Web of Science electronic databases. The search strategy was comprised of all the observational studies with COVID-19 patients confirmed by PCR or serology who were infected by SARS-CoV-2 with no previous cognitive impairment. This review protocol was recorded on PROSPERO with registration number CRD 42023413454. RESULTS: A total of 16 studies from 502 retrieved articles were included. COVID-19 could cause a decline in working memory ability, the results showed that 22.5-55% of the people suffered from working memory impairment in the acute phase (< 3 months) of COVID-19, at 6 months after SARS-CoV2 infection, the impairment of working memory caused by COVID-19 still existed, the prevalence was about 6.2-10%, and 41.1% of the patients had a slight decrease in working memory or a negative change in the boundary value. Moreover, concomitant symptoms could persist for a long time. To some extent, the performance of working memory was affected by age, the time after infection, and the severity of infection (ß = -.132, p <.001; ß = .098, p <.001; ß = .075, p = .003). The mechanism of working memory impairment after infection was mainly focused on the aspects of neuroinflammation and the nerve invasiveness of the virus; at the same time, we also noticed some changes of the brain parenchymal structure. CONCLUSION: COVID-19 can cause a decline in working memory ability, accompanied by neurological symptoms. However, there is a lack of studies to identify the structural and functional changes in specific brain regions that relate to the impaired working memory.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Memory, Short-Term , RNA, Viral , Brain
4.
Behav Brain Funct ; 19(1): 23, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110991

ABSTRACT

As a kind of environmental noise, infrasonic noise has negative effects on various human organs. To date, research has shown that infrasound impairs cognitive function, especially the ability for learning and memory. Previously, we demonstrated that impaired learning and memory induced by infrasound was closely related with glia activation; however, the underlying mechanisms remain unclear. Connexin 43 hemichannels (Cx43 HCs), which are mainly expressed in hippocampal astrocytes, are activated under pathological conditions, lending support to the hypothesis that Cx43 HCs might function in the impaired learning and memory induced by infrasound. This study revealed that that blocking hippocampal Cx43 HCs or downregulating hippocampal Cx43 expression significantly alleviated impaired learning and memory induced by infrasound. We also observed that infrasound exposure led to the abundant release of glutamate and ATP through Cx43 HCs. In addition, the abundant release of glutamate and ATP depended on proinflammatory cytokines. Our finds suggested that the enhanced release of ATP and glutamate by astroglial Cx43 HCs may be involved in the learning and memory deficits caused by infrasound exposure.


Subject(s)
Astrocytes , Connexin 43 , Humans , Astrocytes/metabolism , Connexin 43/metabolism , Memory Disorders/etiology , Memory Disorders/metabolism , Glutamates/metabolism , Glutamates/pharmacology , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology
5.
Exp Clin Transplant ; 21(3): 275-278, 2023 03.
Article in English | MEDLINE | ID: mdl-36987803

ABSTRACT

Scopulariopsis is a species of Aspergillus from the Microascaceae family. It has rarely been reported as a cause of human-borne infection. Here, we describe a 40-year-old female patient who had an invasive pulmonary Scopulariopsisinfection following bilateral lung transplant. During her routine follow-up posttransplant, new nodules were found on chest computed tomography imaging, bronchoalveolar lavage fluid cultures grew filamentous fungi, and lung biopsy was positive for Scopulariopsis. The patient had described a generalized weakness and fatigue for several weeks without cough or chest-related symptoms. After the patient received antifungal treatment, the nodules gradually disappeared, and she improved with good tolerance and without any adverse events. This was a rare case of proven invasive pulmonary Scopulariopsis infection in a lung transplant recipient that caused local disease and systemic infection, which we further analyzed by conducting a literature review. Ourreport can increase the current understanding pertaining to the treatment of a rare and lethal fungal opportunistic infection in immunocompromised humans.


Subject(s)
Mycoses , Scopulariopsis , Humans , Female , Adult , Transplant Recipients , Mycoses/diagnosis , Lung/diagnostic imaging , Lung/pathology , Antifungal Agents/therapeutic use
6.
Heliyon ; 8(12): e12008, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36506366

ABSTRACT

Tendinopathy refers to a type of tendon disease with a multifactorial spectrum. Recent research has begun to reveal the effects of inflammation on the tendinopathic process, especially in the first stage of tendinopathy. Radial extracorporeal shock wave therapy (rESWT) has been successfully used to treat orthopedic diseases. However, the molecular mechanisms underlying the anti-inflammatory effects of rESWT on tumor necrosis factor-α treated tenocytes have not been fully elucidated. In this study, we applied total protein tandem mass tag-labeled quantitative proteomics with liquid chromatography-mass spectrometer/mass spectrometer technology to identify differentially expressed proteins (DEPs) among inflammatory tenocytes, rESWT inflammatory tenocytes, and controls using three biological replicates. Human tenocytes were used and they were cultured in vitro. In total, 1028 and 40 DEPs were detected for control versus inflammatory tenocytes and for inflammatory tenocytes versus rESWT inflammatory tenocytes, respectively. Further, we identified integrin α2, selenoprotein S, and NLR family CARD domain-containing protein 4 as pivotal molecular targets of the anti-inflammatory effects of rESWT. This is the first study to provide a reference proteomic map for inflammatory tenocytes and rESWT inflammatory tenocytes. Our findings provide crucial insight into the molecular mechanisms underscoring the anti-inflammatory effects of rESWT in tendinopathy.

7.
Front Neurol ; 13: 1010975, 2022.
Article in English | MEDLINE | ID: mdl-36570446

ABSTRACT

Objective: This study aimed to compare the efficacy of contralaterally controlled functional electrical stimulation (CCFES) vs. neuromuscular electrical stimulation (NMES) for motor recovery of the lower extremity in patients with subacute stroke. Materials and methods: Seventy patients within 6 months post-stroke were randomly assigned to the CCFES group (n = 35) and the NMES group (n = 35). Both groups underwent routine rehabilitation plus 20-min electrical stimulation (CCFES or NMES) on ankle dorsiflexion muscles per day, 5 days a week, for 3 weeks. Ankle AROM (dorsiflexion), Fugl-Meyer assessment-lower extremity (FMA-LE), Barthel Index (BI), Functional Ambulation Category scale (FAC), 10-meter walking test, and surface electromyography (sEMG) were assessed at the baseline and at the end of the intervention. Result: Ten patients did not complete the study (five in CCFES and five in NMES), so only 60 patients were analyzed in the end. After the 3-week intervention, FMA-LE, BI, Ankle AROM (dorsiflexion), and FAC increased in both groups (p < 0.05). Patients in the CCFES group showed significantly greater improvements only in the measurement of Fugl-Meyer assessment-lower extremity compared with the NMES group after treatment (p < 0.05). The improvement in sEMG response of tibialis anterior by CCFES was greater than NMES (p < 0.05). Conclusion: Contralateral controlled functional electrical stimulation can effectively improve the motor function of the lower limbs better than conventional neuromuscular electrical stimulation in subacute patients after stroke, but the effect on improving the ability to walk, such as walking speed, was not good. Clinical trial registration: http://www.chictr.org.cn/, identifier: ChiCTR2100045423.

8.
Neural Regen Res ; 17(7): 1535-1544, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34916439

ABSTRACT

The anterolateral motor cortex of rodents is an important motor auxiliary area, and its function is similar to that of the premotor area in humans. Activation and inhibition of the contralesional anterolateral motor cortex (cALM) have been shown to have direct effects on motor behavior. However, the significance of cALM activation and inhibition in the treatment of stroke remains unclear. This study investigated the role of optogenetic cALM stimulation in a mouse model of cerebral stroke. The results showed that 21-day optogenetic cALM inhibition, but not activation, improved neurological function. In addition, optogenetic cALM stimulation substantially altered dendritic structural reorganization and dendritic spine plasticity, as optogenetic cALM inhibition resulted in increased dendritic length, number of dendritic spines, and number of perforated synapses, whereas optogenetic activation led to an increase in the number of multiple synapse boutons and the number of dendritic intersections. Furthermore, RNA-seq analysis showed that multiple biological processes regulated by the cALM were upregulated immediately after optogenetic cALM inhibition, and that several immediate-early genes (including cFOS, Erg1, and Sema3f) were expressed at higher levels after optogenetic inhibition than after optogenetic activation. These results were confirmed by quantitative reverse transcription-polymerase chain reaction. Finally, immunofluorescence analysis showed that the c-FOS signal in layer V of the primary motor cortex in the ischemic hemisphere was higher after optogenetic cALM activation than it was after optogenetic cALM inhibition. Taken together, these findings suggest that optogenetic cALM stimulation promotes neural reorganization in the primary motor cortex of the ischemic hemisphere, and that optogenetic cALM inhibition and activation have different effects on neural plasticity. The study was approved by the Experimental Animal Ethics Committee of Fudan University (approval No. 201802173S) on March 3, 2018.

9.
J Integr Neurosci ; 22(1): 5, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36722228

ABSTRACT

BACKGROUND: One of the most serious complications of sepsis is sepsis-associated encephalopathy (SAE), which impairs the cognition ability of survivors. Environmental enrichment (EE) has been demonstrated to alleviate cognition deficits under many kinds of brain injury conditions. However, EE's effects on SAE remain unknown. Therefore, this study aimed to determine EE's effect on cognition disorders under SAE conditions and the underlying mechanism. MATERIALS AND METHODS: Adult male rats, subject to SAE or not, were housed under a standard environment (SE) or EE for 30 days. Subsequently, the rats were subjected to cognitive tests, such as the novel object recognition (NOR) test, the Morris water maze (MWM) test, an Open Field (OF) test, the elevated plus maze (EPM) test, and a sensory neglect (SN) test. Neuroinflammation, apoptosis, and oxidative stress changes in the brain were also detected. RESULTS: The results revealed that SAE impaired somatesthesia, recognition memory, spatial learning and memory, and exploratory activity, which were significantly improved by EE housing. EE also prevented SAE-induced anxiety-like behavior. In addition, EE housing capable induced a decrease in pro-inflammatory cytokines, and an increase in anti-inflammatory cytokines and antioxidant properties in the brain. Moreover, EE housing exerted an anti-apoptosis function by upregulating the level of B-cell lymphoma/leukemia-2 (Bcl-2) level and downregulating the level of p53 level in the hippocampus. CONCLUSIONS: The results of the present study indicated that EE exerts a neuroprotective function on cognitive ability in SAE rats. The effect is achieved by increasing antioxidants, and anti-inflammatory and antiapoptotic capacities. EE can effectively rescue SAE-induced cognitive deficits.


Subject(s)
Brain Diseases , Cognition Disorders , Cognitive Dysfunction , Sepsis-Associated Encephalopathy , Male , Animals , Rats , Sepsis-Associated Encephalopathy/etiology , Sepsis-Associated Encephalopathy/prevention & control , Cognitive Dysfunction/etiology , Cognitive Dysfunction/prevention & control , Cognition , Brain Diseases/etiology , Brain Diseases/prevention & control , Antioxidants , Cytokines
10.
Neural Plast ; 2021: 6680192, 2021.
Article in English | MEDLINE | ID: mdl-33959159

ABSTRACT

Neuropathic pain is one of the important challenges in the clinic. Although a lot of research has been done on neuropathic pain (NP), the molecular mechanism is still elusive. We aimed to investigate whether the Wnt/ß-catenin pathway was involved in NP caused by sustaining dorsal root ganglion (DRG) compression with the chronic compression of dorsal root ganglion model (CCD). Our RNA sequencing results showed that several genes related to the Wnt pathway have changed in DRG and spinal cord dorsal horn (SCDH) after CCD surgery. Therefore, we detected the activation of the Wnt/ß-catenin pathway in DRG and SCDH and found active ß-catenin significantly upregulated in DRG and SCDH 1 day after CCD surgery and peaked on days 7-14. Immunofluorescence results also confirmed nuclear translocalization of active ß-catenin in DRG and SCDH. Additionally, rats had obvious mechanical induced pain after CCD surgery and the pain was significantly alleviated after the application of the Wnt/ß-catenin pathway inhibitor XAV939. Furthermore, we found that the levels of proinflammatory factors tumor necrosis factor-α (TNF-α) and interleukin-18 (IL-18) were significantly elevated in CCD rat serum, while the levels of them were correspondingly decreased after the Wnt/ß-catenin pathway being inhibited. The results of Spearman correlation coefficient analysis showed that the levels of TNF-α and IL-18 were negatively correlated with the mechanical withdrawal thresholds (MWT) after CCD surgery. Collectively, our findings suggest that the Wnt/ß-catenin pathway plays a critical role in the pathogenesis of NP and may be an effective target for the treatment of NP.


Subject(s)
Cytokines/metabolism , Ganglia, Spinal/metabolism , Neuralgia/metabolism , Spinal Cord Compression/metabolism , Wnt Signaling Pathway , beta Catenin , Animals , Chronic Disease , Ganglia, Spinal/physiopathology , Heterocyclic Compounds, 3-Ring/pharmacology , Heterocyclic Compounds, 3-Ring/therapeutic use , Interleukin-18/metabolism , Male , Neuralgia/drug therapy , Pain Measurement , Pain Threshold , Posterior Horn Cells , Rats , Rats, Sprague-Dawley , Spinal Cord Compression/physiopathology , Tumor Necrosis Factor-alpha/metabolism , Wnt Signaling Pathway/drug effects , beta Catenin/drug effects
11.
Int J Immunogenet ; 48(3): 229-238, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33527680

ABSTRACT

Genetic polymorphisms of human leucocyte antigen (HLA)-DRB1, -DQA1 and -DQB1 among four main ethnic groups including Han (n = 70), Uyghur (n = 71), Kazakh (n = 52) and Hui (n = 40) subjects from Xinjiang Uyghur Autonomous Region were investigated using a polymerase chain reaction-sequence-based typing (PCR-SBT). In total, 32 HLA-DRB1 alleles, eight HLA-DQA1 alleles and 14 HLA-DQB1 alleles were identified. The most predominant HLA-DRB1, -DQA1 and -DQB1 alleles were DRB1*15:01 (12.50%), DQA1*01:02 (21.43%) and DQB1*03:01 (19.29%) in Han; DRB1*07:01 (18.48%), DQA1*05:01/03/05 (24.65%) and DQB1*02:01/02 (31.69%) in Uyghur; and DRB1*13:01 (13.64%), DQA1*05:01/03/05 (28.85%) and DQB1*02:01/02 (27.88%) in Kazakh, respectively. In Hui, DRB1*07:01, DRB1*11:01 and DRB1*14:01 were the most dominant alleles with the same frequency of 11.8%, while the predominant DQA1 and DQB1 alleles were DQA1*03:01/02/03 (23.75%) and DQB1*02:01/02 (16.25%), respectively. In addition, the most common two-locus haplotypes were DQA1*05:01/03/5-DQB1*03:01 (10.0%) in Han; DQA1*02:01-DQB1*02:01/02 (18.31%) in Uyghur; DQA1*05:01/03/05-DQB1*02:01/02 (15.38%) in Kazakh; and DQA1*03:01/02/03-DQB1*03:03 (11.25%) in Hui. The phylogenetic dendrograms constructed based on the allele frequencies of HLA-DRB1, -DQA1 and -DQB1 in 13 populations (e.g. Asian, Central Asian and European) revealed that the Han and Hui populations were clustered together and closest to Han population from China, while the Kazakh and Uyghur populations were closest to each other and two ethnic groups were clustered together with Central Asian and European populations.


Subject(s)
Genetics, Population , HLA-DQ alpha-Chains/genetics , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , Alleles , Asian People/genetics , China/epidemiology , Ethnicity/genetics , Female , Gene Frequency , Genotype , HLA-DQ alpha-Chains/immunology , HLA-DQ beta-Chains/immunology , HLA-DRB1 Chains/immunology , Haplotypes/genetics , Haplotypes/immunology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Male , Phylogeny , Polymorphism, Genetic/genetics
12.
Neural Regen Res ; 16(2): 319-324, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32859791

ABSTRACT

Constraint-induced movement therapy (CIMT) can promote the recovery of motor function in injured upper limbs following stroke, which may be associated with upregulation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) at synapses in the ipsilateral sensorimotor cortex in our previous study. However, AMPAR distribution is tightly regulated, and only AMPARs on the postsynaptic membrane can mediate synaptic transmission. We speculated that synaptic remodeling induced by movement-associated synaptic activity can promote functional recovery from stroke. To test this hypothesis, we compared AMPAR expression on the postsynaptic membrane surface in a rat model of ischemic stroke induced by middle cerebral artery occlusion (MCAO) with versus without CIMT, which consisted of daily running wheel training for 2 weeks starting on day 7 after MCAO. The results showed that CIMT increased the number of glutamate receptor (GluR)2-containing functional synapses in the ipsilateral sensorimotor cortex, and reduced non-GluR2 AMPARs in the ipsilateral sensorimotor cortex and hippocampal CA3 region. In addition, CIMT enhanced AMPAR expression on the surface of post-synaptic membrane in the ipsilateral sensorimotor cortex and hippocampus. Thus, CIMT promotes the recovery of motor function of injured upper limbs following stroke by enhancing AMPAR-mediated synaptic transmission in the ischemic hemisphere. These findings provide supporting evidence for the clinical value of CIMT for restoring limb movement in stroke patients. All experimental procedures and protocols were approved by the Department of Laboratory Animal Science of Fudan University, China (approval No. 201802173S) on March 3, 2018.

13.
Neural Plast ; 2021: 1987662, 2021.
Article in English | MEDLINE | ID: mdl-34976049

ABSTRACT

Purpose: To compare the effectiveness of contralaterally controlled functional electrical stimulation (CCFES) versus neuromuscular electrical stimulation (NMES) on motor recovery of the upper limb in subacute stroke patients. Materials and Methods: Fifty patients within six months poststroke were randomly assigned to the CCFES group (n = 25) and the NMES group (n = 25). Both groups underwent routine rehabilitation plus 20-minute stimulation on wrist extensors per day, five days a week, for 3 weeks. Fugl-Meyer Assessment of upper extremity (FMA-UE), action research arm test (ARAT), Barthel Index (BI), and surface electromyography (sEMG) were assessed at baseline and end of intervention. Results: After a 3-week intervention, FMA-UE and BI increased in both groups (p < 0.05). ARAT increased significantly only in the CCFES group (p < 0.05). The changes of FMA-UE, ARAT, and BI in the CCFES group were not greater than those in the NMES group. The improvement in sEMG response of extensor carpi radialis by CCFES was greater than that by NMES (p = 0.026). The cocontraction ratio (CCR) of flexor carpi radialis did not decrease in both groups. Conclusions: CCFES improved upper limb motor function, but did not show better treatment effect than NMES. CCFES significantly enhanced the sEMG response of paretic extensor carpi radialis compared with NMES, but did not decrease the cocontraction of antagonist.


Subject(s)
Electric Stimulation Therapy/methods , Muscle Strength/physiology , Recovery of Function/physiology , Stroke Rehabilitation/methods , Upper Extremity/physiopathology , Adult , Aged , Electromyography , Female , Humans , Male , Middle Aged , Muscle, Skeletal/physiopathology , Stroke/physiopathology , Treatment Outcome
14.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 51(5): 611-617, 2020 Sep.
Article in Chinese | MEDLINE | ID: mdl-32975073

ABSTRACT

OBJECTIVE: To study the effect and mechanism of modified constraint-induced movement therapy (mCIMT) on motor function recovery in cerebral ischemia-reperfusion rats. METHODS: The rats were randomly divided into the control group and the mCIMT group, with 12 rats in each group. The left middle cerebral artery occlusion (MCAO) model was established by the Longa suture method. In the mCIMT group, the rats started continuous training for 14 d on the 7 th day after modeling. The unaffected limb was tied to the chest with elastic bandages, and the affected limb was trained in the compulsory runner equipment. In the control group, rats moved freely in the cage. The body mass of rats was recorded within 20 d after modeling, and behavior was assessed by the foot-fault test. Some of the rats were euthanized 18 d after modeling, and high performance liquid chromatography (HPLC) was used to detect monoamine neurotransmitters (5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIVV), homovanillic acid (HVA) ), and amino acid neurotransmitters (glutamic acid (Glu), asparaginic acid (ASP), glutamine (Gln), glycine (Gly), taurine (Tau), gamma aminobutyric acid (GABA) ) in the motor cortex and striatum, respectively. Enzyme-linked immunosorbent assay (ELISA) was used to detect the expression levels of total P70 ribosomal protein S6 kinase (p70s6k) and p70s6k phosphorylated protein (p-p70s6k) in motor cortex and striatum, respectively. RESULTS: Compared with the control group, the body mass of rats in the mCIMT group was comparable (P >0.05) within 21 d after modeling, foot-fault rate of the mCIMT group was significantly lower at 17 d after modeling (P<0.05). At 18 d after modeling, compared with the control group, the level of 5-HIVV in the motor cortex increased significantly (P<0.05), and the relative content of amino acid neurotransmitters (the ratio of Glu) in the motor cortex including Gln, Gly, Tau and GABA to Glu increased significantly (P<0.05 or P<0.01) except for decreased ASP/Glu (P<0.05). Moreover, compared with the control group, the expression of p-p70s6k in the motor cortex of the mCIMT was significantly decreased (P<0.05). There were no significant differences in monoamine neurotransmitters and amino acid neurotransmitters in the striatum between two groups (P>0.05). CONCLUSION: mCIMT improved the motor function of MCAO rats, and the mechanism might be related to the increase of amino acid neurotransmitters and 5-HIVV and decrease of p-p70s6k expression in the motor cortex.


Subject(s)
Brain Ischemia , Cerebral Cortex , Exercise Therapy , Motor Cortex , Reperfusion Injury , Animals , Brain Ischemia/therapy , Cerebral Cortex/metabolism , Movement , Neurotransmitter Agents , Rats , Rats, Sprague-Dawley , Reperfusion
15.
Alzheimers Res Ther ; 12(1): 89, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32703308

ABSTRACT

BACKGROUND: Neurogenesis is significantly impaired in the brains of both human patients and experimental animal models of Alzheimer's disease (AD). Although deep brain stimulation promotes neurogenesis, it is an invasive technique that may damage neural circuitry along the path of the electrode. To circumvent this problem, we assessed whether intracranial electrical stimulation to the brain affects neurogenesis in a mouse model of Alzheimer's disease (5xFAD). METHODS AND RESULTS: We used Ki67, Nestin, and doublecortin (DCX) as markers and determined that neurogenesis in both the subventricular zone (SVZ) and hippocampus were significantly reduced in the brains of 4-month-old 5xFAD mice. Guided by a finite element method (FEM) computer simulation to approximately estimate current and electric field in the mouse brain, electrodes were positioned on the skull that were likely to deliver stimulation to the SVZ and hippocampus. After a 4-week program of 40-Hz intracranial alternating current stimulation (iACS), neurogenesis indicated by expression of Ki67, Nestin, and DCX in both the SVZ and hippocampus were significantly increased compared to 5xFAD mice who received sham stimulation. The magnitude of neurogenesis was close to the wild-type (WT) age-matched unmanipulated controls. CONCLUSION: Our results suggest that iACS is a promising, less invasive technique capable of effectively stimulating the SVZ and hippocampus regions in the mouse brain. Importantly, iACS can significantly boost neurogenesis in the brain and offers a potential treatment for AD.


Subject(s)
Alzheimer Disease , Alzheimer Disease/therapy , Animals , Computer Simulation , Disease Models, Animal , Doublecortin Protein , Hippocampus , Humans , Mice , Neurogenesis
16.
Neuroscience ; 441: 184-196, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32502570

ABSTRACT

Vascular endothelial cells were activated during acute ischemic brain injury, which could induce neural progenitor cell proliferation and migration. However, the mechanism was still unknown. In the current study, we explored whether vascular endothelial cells promoted neural progenitor cell proliferation and whether migration occurs via exosome communication. The acute middle cerebral artery occlusion (MCAO) model was prepared, and exosomes were isolated from bEnd.3 cells by ultracentrifugation. In the exosome injection (Exos) group and PBS injection (control) group, exosomes or PBS were injected intraventricularly into rats' brains 2 h after MCAO surgery, respectively. Sham group rats received the same surgical but did not cause middle cerebral artery occlusion. The infarct volume was reduced on day 21 after ischemic brain injury by MRI, and neurobehavioral outcomes were improved on day 7, 14, and 21 by exosome injection compared with the control (p < 0.05). On the 21st day after MCAO, the animals were euthanized, and the number of BrdU/nestin-positive cells was measured by immunofluorescence. BrdU/nestin-positive cells in Exos group rats were significantly increased (p < 0.05) in the peri infarct area, the ipsilateral DG zone of the hippocampus, and the ventral sub-regions of SVZ when compared with the rats in the control group. Further, in vitro study demonstrated that neural progenitor cell proliferation and migration were activated after exosomes treatment, and cell apoptosis was attenuated compared to the control (p < 0.05). Our study suggested that exosomes should be essential for the reconstruction of neuronal vascular units and brain protection in an acute ischemic injured brain.


Subject(s)
Brain Ischemia , Exosomes , Neural Stem Cells , Reperfusion Injury , Animals , Endothelial Cells , Infarction, Middle Cerebral Artery/therapy , Rats
17.
ACS Chem Neurosci ; 11(15): 2201-2213, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32574032

ABSTRACT

Exosomes derived from the cerebral endothelial cells play essential roles in protecting neurons from hypoxia injury, but little is known regarding the biological effects and mechanisms of exosomes on brain plasticity. In this study, exosomes were isolated from rodent cerebral endothelial cells (bEnd.3 cells) by ultracentrifugation, either endothelial cell-derived exosomes (EC-Exo) or PBS was injected intraventricularly 2 h after the middle cerebral artery occlusion/reperfusion (MCAO/R) model surgery in the Exo group and control group, respectively. Sham group rats received the same surgical but not ischemic procedure. We evaluated the motor function of rats after MCAO/R, and the foot-fault rate of the Exo group was significantly lower than that of the control group within 23 days (p < 0.05); the Catwalk analysis also showed gait difference between two groups (p < 0.05). On day 28 after MCAO/R, we euthanized the rats, removed the motor cortex from the brain, and then sequenced the genes by using GO and KEGG to find transcriptome analysis of biological terms and functional annotations: The pathway enrichment revealed that the function of synaptic transmission, regulation of synaptic plasticity, and regulation of synaptic vesicle cycle was significantly enriched with the Exo group than control group. Furthermore, the upregulation of synapsin-I expression in the motor cortex (p < 0.05) as well as the increase of the length of the dendrites were found in the Exo group (p < 0.05) than the control group. We determined the content of exosome microRNA levels, and microRNA-126-3p was the highest (TPM) by transcriptome analysis. Moreover, the microRNA-126-3p protected PC12 cells from apoptosis and increased neurite outgrowth, illustrating the mechanism of how exosomes play a role in altering brain plasticity. This study demonstrated that EC-Exo promoted functional motor recovery in the MCAO/R model, exosomes were critical for the reconstruction of synaptic function in ischemic brain injury, and microRNA-126-3p from EC-Exo could serve as a treatment for nerve damage.


Subject(s)
Exosomes , MicroRNAs , Reperfusion Injury , Animals , Brain , Endothelial Cells , MicroRNAs/genetics , Neuronal Plasticity , Rats
18.
Neural Regen Res ; 15(11): 2047-2056, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32394960

ABSTRACT

Paired associative stimulation has been used in stroke patients as an innovative recovery treatment. However, the mechanisms underlying the therapeutic effectiveness of paired associative stimulation on neurological function remain unclear. In this study, rats were randomly divided into middle cerebral occlusion model (MCAO) and paired associated magnetic stimulation (PAMS) groups. The MCAO rat model was produced by middle cerebral artery embolization. The PAMS group received PAMS on days 3 to 20 post MCAO. The MCAO group received sham stimulation, three times every week. Within 18 days after ischemia, rats were subjected to behavioral experiments-the foot-fault test, the balance beam walking test, and the ladder walking test. Balance ability was improved on days 15 and 17, and the foot-fault rate was less in their affected limb on day 15 in the PAMS group compared with the MCAO group. Western blot assay showed that the expression levels of brain derived neurotrophic factor, glutamate receptor 2/3, postsynaptic density protein 95 and synapsin-1 were significantly increased in the PAMS group compared with the MCAO group in the ipsilateral sensorimotor cortex on day 21. Resting-state functional magnetic resonance imaging revealed that regional brain activities in the sensorimotor cortex were increased in the ipsilateral hemisphere, but decreased in the contralateral hemisphere on day 20. By finite element simulation, the electric field distribution showed a higher intensity, of approximately 0.4 A/m2, in the ischemic cortex compared with the contralateral cortex in the template. Together, our findings show that PAMS upregulates neuroplasticity-related proteins, increases regional brain activity, and promotes functional recovery in the affected sensorimotor cortex in the rat MCAO model. The experiments were approved by the Institutional Animal Care and Use Committee of Fudan University, China (approval No. 201802173S) on March 3, 2018.

19.
Brain Res Bull ; 160: 8-23, 2020 07.
Article in English | MEDLINE | ID: mdl-32298779

ABSTRACT

Constraint-induced movement therapy (CIMT) has proven to be an effective way to restore functional deficits following stroke in human and animal studies, but its underlying neural plasticity mechanism remains unknown. Accumulating evidence indicates that rehabilitation after stroke is closely associated with synaptic plasticity. We therefore investigated the impact of CIMT on synaptic plasticity in ipsilateral and contralateral brain of rats following stroke. Rats were subjected to 90 minutes of transient middle cerebral artery occlusion (MCAO). CIMT was performed from 7 days after stroke and lasted for two weeks. Modified Neurology Severity Score (mNSS) and the ladder rung walking task tests were conducted at 7,14 and 21 days after stroke. Golgi-Cox staining was used to observe the plasticity changes of dendrites and dendritic spines. The expression of glutamate receptors (GluR1, GluR2 and NR1) were examined by western blot. Our data suggest that the dendrites and dendritic spines are damaged to varying degrees in bilateral sensorimotor cortex and hippocampus after acute stroke. CIMT treatment enhances the plasticity of dendrites and dendritic spines in the ipsilateral and contralateral sensorimotor cortex, increases the expression of synaptic GluR2 in ipsilateral sensorimotor cortex, which may be mechanisms for CIMT to improve functional recovery after ischemic stroke.


Subject(s)
Hippocampus/physiology , Ischemic Stroke/rehabilitation , Neuronal Plasticity/physiology , Recovery of Function/physiology , Restraint, Physical/physiology , Sensorimotor Cortex/physiology , Animals , Dendrites/physiology , Exercise Therapy/methods , Hippocampus/cytology , Ischemic Stroke/physiopathology , Male , Rats , Rats, Sprague-Dawley , Restraint, Physical/methods , Sensorimotor Cortex/cytology
20.
Neural Regen Res ; 15(6): 1045-1057, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31823884

ABSTRACT

Modified constraint-induced movement therapy is an effective treatment for neurological and motor impairments in patients with stroke by increasing the use of their affected limb and limiting the contralateral limb. However, the molecular mechanism underlying its efficacy remains unclear. In this study, a middle cerebral artery occlusion (MCAO) rat model was produced by the suture method. Rats received modified constraint-induced movement therapy 1 hour a day for 14 consecutive days, starting from the 7th day after middle cerebral artery occlusion. Day 1 of treatment lasted for 10 minutes at 2 r/min, day 2 for 20 minutes at 2 r/min, and from day 3 onward for 20 minutes at 4 r/min. CatWalk gait analysis, adhesive removal test, and Y-maze test were used to investigate motor function, sensory function as well as cognitive function in rodent animals from the 1st day before MCAO to the 21st day after MCAO. On the 21st day after MCAO, the neurotransmitter receptor-related genes from both contralateral and ipsilateral hippocampi were tested by micro-array and then verified by western blot assay. The glutamate related receptor was shown by transmission electron microscopy and the glutamate content was determined by high-performance liquid chromatography. The results of behavior tests showed that modified constraint-induced movement therapy promoted motor and sensory functional recovery in the middle cerebral artery-occluded rats, but had no effect on cognitive function. The modified constraint-induced movement therapy upregulated the expression of glutamate ionotropic receptor AMPA type subunit 3 (Gria3) in the hippocampus and downregulated the expression of the beta3-adrenergic receptor gene Adrb3 and arginine vasopressin receptor 1A, Avpr1a in the middle cerebral artery-occluded rats. In the ipsilateral hippocampus, only Adra2a was downregulated, and there was no significant change in Gria3. Transmission electron microscopy revealed a denser distribution the more distribution of postsynaptic glutamate receptor 2/3, which is an α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor, within 240 nm of the postsynaptic density in the contralateral cornu ammonis 3 region. The size and distribution of the synaptic vesicles within 100 nm of the presynaptic active zone were unchanged. Western blot analysis showed that modified constraint-induced movement therapy also increased the expression of glutamate receptor 2/3 and brain-derived neurotrophic factor in the hippocampus of rats with middle cerebral artery occlusion, but had no effect on Synapsin I levels. Besides, we also found modified constraint-induced movement therapy effectively reduced glutamate content in the contralateral hippocampus. This study demonstrated that modified constraint-induced movement therapy is an effective rehabilitation therapy in middle cerebral artery-occluded rats, and suggests that these positive effects occur via the upregulation of the postsynaptic membrane α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor expression. This study was approved by the Institutional Animal Care and Use Committee of Fudan University, China (approval No. 201802173S) on March 3, 2018.

SELECTION OF CITATIONS
SEARCH DETAIL
...