Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Proteome Res ; 20(7): 3689-3700, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34085531

ABSTRACT

Novel therapies and biomarkers are needed for the treatment of acute ischemic stroke (AIS). This study aimed to provide comprehensive insights into the dynamic proteome changes and underlying molecular mechanisms post-ischemic stroke. TMT-coupled proteomic analysis was conducted on mouse brain cortex tissue from five time points up to 4 weeks poststroke in the distal hypoxic-middle cerebral artery occlusion (DH-MCAO) model. We found that nearly half of the detected proteome was altered following stroke, but only ∼8.6% of the changes were at relatively large scales. Clustering on the changed proteome defined four distinct expression patterns characterized by temporal and quantitative changes in innate and adaptive immune response pathways and cytoskeletal and neuronal remodeling. Further analysis on a subset of 309 "top hits", which temporally responded to stroke with relatively large and sustained changes, revealed that they were mostly secreted proteins, highly correlated to different cortical cytokines, and thereby potential pharmacodynamic biomarker candidates for inflammation-targeting therapies. Closer examination of the top enriched neurophysiologic pathways identified 57 proteins potentially associated with poststroke recovery. Altogether, our study generated a rich dataset with candidate proteins worthy of further validation as biomarkers and/or therapeutic targets for stroke. The proteomics data are available in the PRIDE Archive with identifier PXD025077.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Animals , Mice , Proteome/genetics , Proteomics
2.
Bioinformatics ; 37(20): 3670-3672, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-33901288

ABSTRACT

SUMMARY: We developed Quickomics, a feature-rich R Shiny-powered tool to enable biologists to fully explore complex omics statistical analysis results and perform advanced analysis in an easy-to-use interactive interface. It covers a broad range of secondary and tertiary analytical tasks after primary analysis of omics data is completed. Each functional module is equipped with customizable options and generates both interactive and publication-ready plots to uncover biological insights from data. The modular design makes the tool extensible with ease. AVAILABILITY AND IMPLEMENTATION: Researchers can experience the functionalities with their own data or demo RNA-Seq and proteomics datasets by using the app hosted at http://quickomics.bxgenomics.com and following the tutorial, https://bit.ly/3rXIyhL. The source code under GPLv3 license is provided at https://github.com/interactivereport/Quickomics for local installation. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

3.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: mdl-33526652

ABSTRACT

Identifying molecular mediators of neural circuit development and/or function that contribute to circuit dysfunction when aberrantly reengaged in neurological disorders is of high importance. The role of the TWEAK/Fn14 pathway, which was recently reported to be a microglial/neuronal axis mediating synaptic refinement in experience-dependent visual development, has not been explored in synaptic function within the mature central nervous system. By combining electrophysiological and phosphoproteomic approaches, we show that TWEAK acutely dampens basal synaptic transmission and plasticity through neuronal Fn14 and impacts the phosphorylation state of pre- and postsynaptic proteins in adult mouse hippocampal slices. Importantly, this is relevant in two models featuring synaptic deficits. Blocking TWEAK/Fn14 signaling augments synaptic function in hippocampal slices from amyloid-beta-overexpressing mice. After stroke, genetic or pharmacological inhibition of TWEAK/Fn14 signaling augments basal synaptic transmission and normalizes plasticity. Our data support a glial/neuronal axis that critically modifies synaptic physiology and pathophysiology in different contexts in the mature brain and may be a therapeutic target for improving neurophysiological outcomes.


Subject(s)
Nerve Degeneration/metabolism , Signal Transduction , Stroke/metabolism , Synapses/metabolism , TWEAK Receptor/metabolism , Animals , Cytokine TWEAK/metabolism , Disease Models, Animal , Female , Hippocampus/physiopathology , Male , Mice, Inbred C57BL , Mice, Transgenic , Nerve Degeneration/physiopathology , Neuronal Plasticity/physiology , Presynaptic Terminals/metabolism , Stroke/physiopathology , Synaptic Transmission/physiology
4.
Cell Mol Neurobiol ; 41(4): 669-685, 2021 May.
Article in English | MEDLINE | ID: mdl-32424773

ABSTRACT

Tau-tubulin kinase 1 (TTBK1) is a CNS-specific, kinase that has been implicated in the pathological phosphorylation of tau in Alzheimer's Disease (AD) and Frontotemporal Dementia (FTD). TTBK1 is a challenging therapeutic target because it shares a highly conserved catalytic domain with its homolog, TTBK2, a ubiquitously expressed kinase genetically linked to the disease spinocerebellar ataxia type 11. The present study attempts to elucidate the functional distinctions between the TTBK isoforms and increase our understanding of them as distinct targets for the treatment of neurodegenerative disease. We demonstrate that in cortical neurons, TTBK1, not TTBK2, is the isoform responsible for tau phosphorylation at epitopes enriched in tauopathies such as Serine 422. In addition, although our elucidation of the crystal structure of the TTBK2 kinase domain indicates almost identical structural similarity with TTBK1, biochemical and cellular assays demonstrate that the enzymatic activity of these two proteins is regulated by a combination of unique extra-catalytic sequences and autophosphorylation events. Finally, we have identified an unbiased list of neuronal interactors and phosphorylation substrates for TTBK1 and TTBK2 that highlight the unique cellular pathways and functional networks that each isoform is involved in. This data address an important gap in knowledge regarding the implications of targeting TTBK kinases and may prove valuable in the development of potential therapies for disease.


Subject(s)
Protein Serine-Threonine Kinases/metabolism , Amino Acid Sequence , Animals , Cerebral Cortex/pathology , Epitopes/metabolism , HEK293 Cells , Humans , Isoenzymes/chemistry , Isoenzymes/metabolism , Mice, Transgenic , Neurons/metabolism , Phosphopeptides/chemistry , Phosphopeptides/metabolism , Phosphoproteins/metabolism , Phosphorylation , Protein Binding , Protein Domains , Protein Serine-Threonine Kinases/chemistry , Proteomics , Serine/metabolism , Structural Homology, Protein , tau Proteins/metabolism
5.
Neurobiol Dis ; 127: 512-526, 2019 07.
Article in English | MEDLINE | ID: mdl-30954703

ABSTRACT

BACKGROUND: Mutations in LRRK2 are the most common cause of autosomal dominant Parkinson's disease, and the relevance of LRRK2 to the sporadic form of the disease is becoming ever more apparent. It is therefore essential that studies are conducted to improve our understanding of the cellular role of this protein. Here we use multiple models and techniques to identify the pathways through which LRRK2 mutations may lead to the development of Parkinson's disease. METHODS: A novel integrated transcriptomics and proteomics approach was used to identify pathways that were significantly altered in iPSC-derived dopaminergic neurons carrying the LRRK2-G2019S mutation. Western blotting, immunostaining and functional assays including FM1-43 analysis of synaptic vesicle endocytosis were performed to confirm these findings in iPSC-derived dopaminergic neuronal cultures carrying either the LRRK2-G2019S or the LRRK2-R1441C mutation, and LRRK2 BAC transgenic rats, and post-mortem human brain tissue from LRRK2-G2019S patients. RESULTS: Our integrated -omics analysis revealed highly significant dysregulation of the endocytic pathway in iPSC-derived dopaminergic neurons carrying the LRRK2-G2019S mutation. Western blot analysis confirmed that key endocytic proteins including endophilin I-III, dynamin-1, and various RAB proteins were downregulated in these cultures and in cultures carrying the LRRK2-R1441C mutation, compared with controls. We also found changes in expression of 25 RAB proteins. Changes in endocytic protein expression led to a functional impairment in clathrin-mediated synaptic vesicle endocytosis. Further to this, we found that the endocytic pathway was also perturbed in striatal tissue of aged LRRK2 BAC transgenic rats overexpressing either the LRRK2 wildtype, LRRK2-R1441C or LRRK2-G2019S transgenes. Finally, we found that clathrin heavy chain and endophilin I-III levels are increased in human post-mortem tissue from LRRK2-G2019S patients compared with controls. CONCLUSIONS: Our study demonstrates extensive alterations across the endocytic pathway associated with LRRK2 mutations in iPSC-derived dopaminergic neurons and BAC transgenic rats, as well as in post-mortem brain tissue from PD patients carrying a LRRK2 mutation. In particular, we find evidence of disrupted clathrin-mediated endocytosis and suggest that LRRK2-mediated PD pathogenesis may arise through dysregulation of this process.


Subject(s)
Dopaminergic Neurons/metabolism , Endocytosis/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mutation , Animals , Gene Expression Profiling , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Proteomics , Rats , Rats, Transgenic , Synaptic Vesicles/genetics
6.
Genes (Basel) ; 9(12)2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30501089

ABSTRACT

Fibroblasts/myofibroblasts are the key effector cells responsible for excessive extracellular matrix (ECM) deposition and fibrosis progression in both idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc) patient lungs, thus it is critical to understand the transcriptomic and proteomic programs underlying their fibrogenic activity. We conducted the first integrative analysis of the fibrotic programming in these cells at the levels of gene and microRNA (miRNA) expression, as well as deposited ECM protein to gain insights into how fibrotic transcriptional programs culminate in aberrant ECM protein production/deposition. We identified messenger RNA (mRNA), miRNA, and deposited matrisome protein signatures for IPF and SSc fibroblasts obtained from lung transplants using next-generation sequencing and mass spectrometry. SSc and IPF fibroblast transcriptional signatures were remarkably similar, with enrichment of WNT, TGF-ß, and ECM genes. miRNA-seq identified differentially regulated miRNAs, including downregulation of miR-29b-3p, miR-138-5p and miR-146b-5p in disease fibroblasts and transfection of their mimics decreased expression of distinct sets of fibrotic signature genes as assessed using a Nanostring fibrosis panel. Finally, proteomic analyses uncovered a distinct "fibrotic" matrisome profile deposited by IPF and SSc fibroblasts compared to controls that highlights the dysregulated ECM production underlying their fibrogenic activities. Our comprehensive analyses of mRNA, miRNA, and matrisome proteomic profiles in IPF and SSc lung fibroblasts revealed robust fibrotic signatures at both the gene and protein expression levels and identified novel fibrogenesis-associated miRNAs whose aberrant downregulation in disease fibroblasts likely contributes to their fibrotic and ECM gene expression.

7.
Sci Signal ; 11(541)2018 07 31.
Article in English | MEDLINE | ID: mdl-30065029

ABSTRACT

Members of the family of nuclear factor κB (NF-κB) transcription factors are critical for multiple cellular processes, including regulating innate and adaptive immune responses, cell proliferation, and cell survival. Canonical NF-κB complexes are retained in the cytoplasm by the inhibitory protein IκBα, whereas noncanonical NF-κB complexes are retained by p100. Although activation of canonical NF-κB signaling through the IκBα kinase complex is well studied, few regulators of the NF-κB-inducing kinase (NIK)-dependent processing of noncanonical p100 to p52 and the subsequent nuclear translocation of p52 have been identified. We discovered a role for cyclin-dependent kinase 12 (CDK12) in transcriptionally regulating the noncanonical NF-κB pathway. High-content phenotypic screening identified the compound 919278 as a specific inhibitor of the lymphotoxin ß receptor (LTßR), and tumor necrosis factor (TNF) receptor superfamily member 12A (FN14)-dependent nuclear translocation of p52, but not of the TNF-α receptor-mediated nuclear translocation of p65. Chemoproteomics identified CDK12 as the target of 919278. CDK12 inhibition by 919278, the CDK inhibitor THZ1, or siRNA-mediated knockdown resulted in similar global transcriptional changes and prevented the LTßR- and FN14-dependent expression of MAP3K14 (which encodes NIK) as well as NIK accumulation by reducing phosphorylation of the carboxyl-terminal domain of RNA polymerase II. By coupling a phenotypic screen with chemoproteomics, we identified a pathway for the activation of the noncanonical NF-κB pathway that could serve as a therapeutic target in autoimmunity and cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclin-Dependent Kinases/metabolism , Gene Expression Regulation, Neoplastic , NF-kappa B/metabolism , Osteosarcoma/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/genetics , Cyclins/genetics , Cyclins/metabolism , Gene Expression Profiling , High-Throughput Screening Assays , Humans , Indoles/pharmacology , Lymphotoxin beta Receptor/antagonists & inhibitors , Lymphotoxin beta Receptor/genetics , Lymphotoxin beta Receptor/metabolism , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , NF-kappa B p52 Subunit/genetics , NF-kappa B p52 Subunit/metabolism , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Propionates/pharmacology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proteome , Signal Transduction , TWEAK Receptor/antagonists & inhibitors , TWEAK Receptor/genetics , TWEAK Receptor/metabolism , Tumor Cells, Cultured , NF-kappaB-Inducing Kinase
8.
Nephrol Dial Transplant ; 32(9): 1468-1477, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28339802

ABSTRACT

BACKGROUND: The excessive accumulation of extracellular matrix (ECM) in the renal tubulointerstitium is a key component of chronic renal damage in lupus nephritis (LN) and a critical determinant of the disease progression to renal failure. Detection of fibrosis requires renal biopsy and is therefore limited by high risks associated with an invasive procedure. This study explores whether a unique LN urinary peptidome can be identified and whether LN-specific alteration reflects the underlying fibrogenic process of altered ECM turnover. METHOD: Urinary peptides were analyzed for 36 LN and 35 nonrenal systemic lupus erythematosus (SLE) subjects and 58 healthy volunteers (HVs). RESULTS: In total, 70 collagen and 230 noncollagen peptides were significantly changed between LN and nonrenal SLE and between LN and HV and defined as 'LN peptides'; 14 proteases associated with observed LN collagen peptides were identified and activities in 9 proteases were significantly different between LN and nonrenal SLE; 28 collagen peptides were correlated with at least one parameter of clinical renal dysfunction or histolopathology. CONCLUSION: Urinary peptidomic alterations likely reflect pathogenic pathways involving ECM turnover in LN kidneys and potentially could be developed as biomarkers to monitor renal disease progression.


Subject(s)
Biomarkers/urine , Collagen/urine , Kidney Diseases/diagnosis , Lupus Erythematosus, Systemic/complications , Lupus Nephritis/complications , Peptide Fragments/urine , Adult , Case-Control Studies , Disease Progression , Female , Humans , Kidney Diseases/etiology , Kidney Diseases/urine , Male
9.
J Am Soc Nephrol ; 28(6): 1769-1782, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28130402

ABSTRACT

Connective tissue growth factor (CTGF), a matrix-associated protein with four distinct cytokine binding domains, has roles in vasculogenesis, wound healing responses, and fibrogenesis and is upregulated in fibroblasts and myofibroblasts in disease. Here, we investigated the role of CTGF in fibrogenic cells. In mice, tissue-specific inducible overexpression of CTGF by kidney pericytes and fibroblasts had no bearing on nephrogenesis or kidney homeostasis but exacerbated inflammation and fibrosis after ureteral obstruction. These effects required the WNT receptor LDL receptor-related protein 6 (LRP6). Additionally, pericytes isolated from these mice became hypermigratory and hyperproliferative on overexpression of CTGF. CTGF is cleaved in vivo into distinct domains. Treatment with recombinant domain 1, 1+2 (N terminus), or 4 (C terminus) independently activated myofibroblast differentiation and wound healing responses in cultured pericytes, but domain 4 showed the broadest profibrotic activity. Domain 4 exhibited low-affinity binding to LRP6 in in vitro binding assays, and inhibition of LRP6 or critical signaling cascades downstream of LRP6, including JNK and WNT/ß-catenin, inhibited the biologic activity of domain 4. Administration of blocking antibodies specifically against CTGF domain 4 or recombinant Dickkopf-related protein-1, an endogenous inhibitor of LRP6, effectively inhibited inflammation and fibrosis associated with ureteral obstruction in vivo Therefore, domain 4 of CTGF and the WNT signaling pathway are important new targets in fibrosis.


Subject(s)
Connective Tissue Growth Factor/physiology , Kidney Diseases/etiology , Kidney/pathology , Low Density Lipoprotein Receptor-Related Protein-6/physiology , Animals , Connective Tissue Growth Factor/antagonists & inhibitors , Fibroblasts , Fibrosis/etiology , Intercellular Signaling Peptides and Proteins/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pericytes
10.
BMC Med Genomics ; 9: 5, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26793951

ABSTRACT

BACKGROUND: Parkinson disease (PD) is a neurodegenerative disease characterized by the accumulation of alpha-synuclein (SNCA) and other proteins in aggregates termed "Lewy Bodies" within neurons. PD has both genetic and environmental risk factors, and while processes leading to aberrant protein aggregation are unknown, past work points to abnormal levels of SNCA and other proteins. Although several genome-wide studies have been performed for PD, these have focused on DNA sequence variants by genome-wide association studies (GWAS) and on RNA levels (microarray transcriptomics), while genome-wide proteomics analysis has been lacking. METHODS: This study employed two state-of-the-art technologies, three-stage Mass Spectrometry Tandem Mass Tag Proteomics (12 PD, 12 controls) and RNA-sequencing transcriptomics (29 PD, 44 controls), evaluated in the context of PD GWAS implicated loci and microarray transcriptomics (19 PD, 24 controls). The technologies applied for this study were performed in a set of overlapping prefrontal cortex (Brodmann area 9) samples obtained from PD patients and sex and age similar neurologically healthy controls. RESULTS: After appropriate filters, proteomics robustly identified 3558 unique proteins, with 283 of these (7.9 %) significantly different between PD and controls (q-value < 0.05). RNA-sequencing identified 17,580 protein-coding genes, with 1095 of these (6.2 %) significantly different (FDR p-value < 0.05); only 166 of the FDR significant protein-coding genes (0.94 %) were present among the 3558 proteins characterized. Of these 166, eight genes (4.8 %) were significant in both studies, with the same direction of effect. Functional enrichment analysis of the proteomics results strongly supports mitochondrial-related pathways, while comparable analysis of the RNA-sequencing results implicates protein folding pathways and metallothioneins. Ten of the implicated genes or proteins co-localized to GWAS loci. Evidence implicating SNCA was stronger in proteomics than in RNA-sequencing analyses. CONCLUSIONS: We report the largest analysis of proteomics in PD to date, and the first to combine this technology with RNA-sequencing to investigate GWAS implicated loci. Notably, differentially expressed protein-coding genes were more likely to not be characterized in the proteomics analysis, which lessens the ability to compare across platforms. Combining multiple genome-wide platforms offers novel insights into the pathological processes responsible for this disease by identifying pathways implicated across methodologies.


Subject(s)
Gene Expression Profiling/methods , Genome-Wide Association Study , Mitochondria/metabolism , Parkinson Disease/genetics , Protein Folding , Proteomics/methods , Aged , Aged, 80 and over , Gene Ontology , Genetic Predisposition to Disease , Humans , Middle Aged , Oligonucleotide Array Sequence Analysis , Open Reading Frames/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA
11.
Invest Ophthalmol Vis Sci ; 56(12): 7036-42, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26529037

ABSTRACT

PURPOSE: The proteomic profile of vitreous from second-trimester human embryos and young adults was characterized using mass spectrometry and analyzed for changes in protein levels that may relate to structural changes occurring during this time. This vitreous proteome was compared to previous reports to confirm proteins already identified and reveal novel ones. METHODS: Vitreous from 17 human embryos aged 14 to 20 weeks gestation (WG) and from a 12-, a 14-, a 15-, and a 28-year-old was individually analyzed using tandem mass spectrometry-based proteomics. Peptide spectral count associations with embryonic age were assessed using a general linear model of fold changes and Spearman's rank correlation. Differences between embryonic and young adult vitreous proteomes were also compared. Immunohistochemistry was used to evaluate three proteins in five additional fetal (10-18 WG) human eyes. RESULTS: There were 1217 proteins identified in fetal and young adult human vitreous, 206 after quantile normalization and variance filtering. In embryos, the peptide counts of 37 proteins changed significantly from 14 to 20 WG: 75.7% increased, 24.3% decreased. Immunohistochemistry confirmed the absence of clusterin and cadherin in 10 and 14 WG eyes and their presence at 18 WG. Comparing embryonic to young adult vitreous, 47 proteins were significantly higher or lower. A total of 768 proteins not previously identified in the literature are presented. CONCLUSIONS: Proteins previously unreported in the human vitreous were identified. The human vitreous proteome undergoes significant changes during embryogenesis and young adulthood. A number of protein levels change considerably during the second trimester, with the majority decreasing.


Subject(s)
Eye Proteins/metabolism , Proteomics/methods , Vitreous Body/chemistry , Adolescent , Adult , Child , Chromatography, Liquid , Cross-Sectional Studies , Female , Humans , Immunohistochemistry , Male , Pregnancy , Vitreous Body/cytology , Vitreous Body/embryology , Young Adult
12.
PLoS One ; 10(3): e0120254, 2015.
Article in English | MEDLINE | ID: mdl-25793262

ABSTRACT

Delayed-release dimethyl fumarate (also known as gastro-resistant dimethyl fumarate), an oral therapeutic containing dimethyl fumarate (DMF) as the active ingredient, is currently approved for the treatment of relapsing multiple sclerosis. DMF is also a component in a distinct mixture product with 3 different salts of monoethyl fumarate (MEF), which is marketed for the treatment of psoriasis. Previous studies have provided insight into the pharmacologic properties of DMF, including modulation of kelch-like ECH-associated protein 1 (KEAP1), activation of the nuclear factor (erythroid-derived 2)-like 2 (NRF2) pathway, and glutathione (GSH) modulation; however, those of MEF remain largely unexplored. Therefore, the aim of this study was to evaluate the in vitro effects of DMF and MEF on KEAP1 modification, activation of the NRF2 pathway, and GSH conjugation. Using mass spectrometry, DMF treatment resulted in a robust modification of specific cysteine residues on KEAP1. In comparison, the overall degree of KEAP1 modification following MEF treatment was significantly less or undetectable. Consistent with KEAP1 cysteine modification, DMF treatment resulted in nuclear translocation of NRF2 and a robust transcriptional response in treated cells, as did MEF; however, the responses to MEF were of a lower magnitude or distinct compared to DMF. DMF was also shown to produce an acute concentration-dependent depletion of GSH; however, GSH levels eventually recovered and rose above baseline by 24 hours. In contrast, MEF did not cause acute reductions in GSH, but did produce an increase by 24 hours. Overall, these studies demonstrate that DMF and MEF are both pharmacologically active, but have differing degrees of activity as well as unique actions. These differences would be expected to result in divergent effects on downstream biology.


Subject(s)
Dimethyl Fumarate/pharmacology , Fumarates/pharmacology , Glutathione/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , NF-E2-Related Factor 2/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cysteine/metabolism , Dimethyl Fumarate/chemistry , Extracellular Space/metabolism , Fumarates/chemistry , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2/genetics , Protein Transport/drug effects
13.
Invest Ophthalmol Vis Sci ; 54(2): 1086-94, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23299478

ABSTRACT

PURPOSE: Retinal hemorrhages occur in a variety of sight-threatening conditions including ocular trauma, high altitude retinopathy, and chronic diseases such as diabetic and hypertensive retinopathies. The goal of this study is to investigate the effects of blood in the vitreous on retinal vascular function in rats. METHODS: Intravitreal injections of autologous blood, plasma kallikrein (PK), bradykinin, and collagenase were performed in Sprague-Dawley and Long-Evans rats. Retinal vascular permeability was measured using vitreous fluorophotometry and Evans blue dye permeation. Leukostasis was measured by fluorescein isothiocyanate-coupled concanavalin A lectin and acridine orange labeling. Retinal hemorrhage was examined on retinal flatmounts. Primary cultures of bovine retinal pericytes were cultured in the presence of 25 nM PK for 24 hours. The pericyte-conditioned medium was collected and the collagen proteome was analyzed by tandem mass spectrometry. RESULTS: Intravitreal injection of autologous blood induced retinal vascular permeability and retinal leukostasis, and these responses were ameliorated by PK inhibition. Intravitreal injections of exogenous PK induced retinal vascular permeability, leukostasis, and retinal hemorrhage. Proteomic analyses showed that PK increased collagen degradation in pericyte-conditioned medium and purified type IV collagen. Intravitreal injection of collagenase mimicked PK's effect on retinal hemorrhage. CONCLUSIONS: Intraocular hemorrhage increases retinal vascular permeability and leukostasis, and these responses are mediated, in part, via PK. Intravitreal injections of either PK or collagenase, but not bradykinin, induce retinal hemorrhage in rats. PK exerts collagenase-like activity that may contribute to blood-retinal barrier dysfunction.


Subject(s)
Plasma Kallikrein/metabolism , Retinal Diseases/etiology , Retinal Hemorrhage/complications , Retinal Vessels/pathology , Animals , Blood , Blood-Retinal Barrier/drug effects , Bradykinin/pharmacology , Capillary Permeability , Cattle , Cells, Cultured , Collagenases/pharmacology , Concanavalin A/metabolism , Evans Blue/metabolism , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescein-5-isothiocyanate/metabolism , Fluorophotometry , Intravitreal Injections , Leukostasis/etiology , Male , Pericytes/drug effects , Pericytes/metabolism , Plasma Kallikrein/pharmacology , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Retinal Diseases/metabolism , Retinal Hemorrhage/metabolism , Retinal Vessels/metabolism , Tandem Mass Spectrometry , Vitreous Body/drug effects , Vitreous Body/metabolism
14.
J Proteome Res ; 12(2): 1031-9, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23214967

ABSTRACT

Stable isotope labeling via isobaric derivatization of peptides is a universally applicable approach that enables concurrent identification and quantification of proteins in different samples using tandem mass spectrometry. In this study, we evaluated the performance of amine-reactive isobaric tandem mass tag (TMT), available as duplex and sixplex sets, with regard to their ability to elucidate protein expression changes. Using rat brain tissue from two different developmental time points, postnatal day 1 (p1) and 45 (p45), as a model system, we compared the protein expression ratios (p45/p1) observed using duplex TMT tags in triplicate measurements versus sixplex tag in a single LC-MS/MS analysis. A correlation of 0.79 in relative protein abundance was observed in the proteins quantified by these two sets of reagents. However, more proteins passed the criteria for significant fold change (-1.0 ≤ log(2) ratio (p45/p1) ≥ +1.0 and p < 0.05) in the sixplex analysis. Nevertheless, in both methods most proteins showing significant fold change were identified by multiple spectra, increasing their quantification precision. Additionally, the fold change in p45 rats against p1, observed in TMT experiments, was corroborated by a metabolic labeling strategy where relative quantification of differentially expressed proteins was obtained using (15)N-labeled p45 rats as an internal standard.


Subject(s)
Brain Chemistry , Gene Expression Regulation, Developmental , Nerve Tissue Proteins/analysis , Peptide Fragments/analysis , Staining and Labeling/methods , Animals , Animals, Newborn , Chromatography, Liquid , Isotope Labeling , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Peptide Fragments/chemistry , Proteomics , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry
15.
J Biol Chem ; 287(7): 4518-30, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22158866

ABSTRACT

The regulation of endothelial function by insulin is consistently abnormal in insulin-resistant states and diabetes. Protein kinase C (PKC) activation has been reported to inhibit insulin signaling selectively in endothelial cells via the insulin receptor substrate/PI3K/Akt pathway to reduce the activation of endothelial nitric-oxide synthase (eNOS). In this study, it was observed that PKC activation differentially inhibited insulin receptor substrate 1/2 (IRS1/2) signaling of insulin's activation of PI3K/eNOS by decreasing only tyrosine phosphorylation of IRS2. In addition, PKC activation, by general activator and specifically by angiotensin II, increased the phosphorylation of p85/PI3K, which decreases its association with IRS1 and activation. Thr-86 of p85/PI3K was identified to be phosphorylated by PKC activation and confirmed to affect IRS1-mediated activation of Akt/eNOS by insulin and VEGF using a deletion mutant of the Thr-86 region of p85/PI3K. Thus, PKC and angiotensin-induced phosphorylation of Thr-86 of p85/PI3K may partially inhibit the activation of PI3K/eNOS by multiple cytokines and contribute to endothelial dysfunction in metabolic disorders.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase/metabolism , Endothelial Cells/metabolism , Insulin/metabolism , Protein Kinase C/metabolism , Signal Transduction/physiology , Animals , Cattle , Cells, Cultured , Endothelial Cells/cytology , Enzyme Activation/physiology , Insulin Receptor Substrate Proteins/metabolism , Metabolic Diseases/metabolism , Nitric Oxide Synthase Type III/metabolism , Phosphorylation/physiology , Proto-Oncogene Proteins c-akt/metabolism , Vascular Endothelial Growth Factor A/metabolism
16.
Nat Med ; 17(2): 206-10, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21258336

ABSTRACT

Hyperglycemia is associated with greater hematoma expansion and poor clinical outcomes after intracerebral hemorrhage. We show that cerebral hematoma expansion triggered by intracerebral infusion of autologous blood is greater in diabetic rats and mice compared to nondiabetic controls and that this augmented expansion is ameliorated by plasma kallikrein (PK) inhibition or deficiency. Intracerebral injection of purified PK augmented hematoma expansion in both diabetic and acutely hyperglycemic rats, whereas injection of bradykinin, plasmin or tissue plasminogen activator did not elicit such a response. This response, which occurs rapidly, was prevented by co-injection of the glycoprotein VI agonist convulxin and was mimicked by glycoprotein VI inhibition or deficiency, implicating an effect of PK on inhibiting platelet aggregation. We show that PK inhibits collagen-induced platelet aggregation by binding collagen, a response enhanced by elevated glucose concentrations. The effect of hyperglycemia on hematoma expansion and PK-mediated inhibition of platelet aggregation could be mimicked by infusing mannitol. These findings suggest that hyperglycemia augments cerebral hematoma expansion by PK-mediated osmotic-sensitive inhibition of hemostasis.


Subject(s)
Cerebral Hemorrhage/physiopathology , Hematoma/physiopathology , Hyperglycemia/physiopathology , Plasma Kallikrein/physiology , Animals , Blood-Brain Barrier/physiopathology , Brain/drug effects , Brain/physiopathology , Diabetes Mellitus, Experimental/physiopathology , Injections, Intraventricular , Mice , Mice, Inbred C57BL , Plasma Kallikrein/pharmacology , Plasminogen/physiology , Platelet Aggregation/drug effects , Platelet Aggregation/physiology , Rats , Rats, Sprague-Dawley
17.
Semin Ophthalmol ; 25(5-6): 289-94, 2010.
Article in English | MEDLINE | ID: mdl-21091014

ABSTRACT

Diabetic retinopathy is the major cause of acquired blindness in working-age adults. Studies of the vitreous proteome have provided insights into the etiology of diabetic retinopathy and suggested potential molecular targets for treatments. Further characterization of the protein changes associated with the progression of this disease may suggest additional therapeutic approaches as well as reveal novel factors that may be useful in predicting risk and functional outcomes of interventional therapies. This article provides an overview of the various techniques used for proteomic analysis of the vitreous and details results from various studies evaluating vitreous of diabetic patients using the proteomic approach.


Subject(s)
Diabetic Retinopathy/metabolism , Eye Proteins/metabolism , Proteomics , Vitreous Body/metabolism , Diabetic Retinopathy/etiology , Humans , Mass Spectrometry
18.
Transl Stroke Res ; 1(4): 276-86, 2010 Dec.
Article in English | MEDLINE | ID: mdl-24323554

ABSTRACT

Plasma kallikrein (PK) is activated during hemorrhage and has been implicated in cerebral vascular permeability and edema. To further characterize the potential effects of PK on the brain that may follow cerebral vascular injury, we have utilized a proteomics approach to search for novel PK substrates in the astrocyte secretome. Extracellular proteins released by astrocytes are critical mediators of cerebral homeostasis, including roles in synapse function and vascular integrity. We identified 1,108 proteins in astrocyte condition medium and 295 of these were annotated as secreted proteins. The total abundance of nine proteins was changed after treatment with PK. Characterization of the secreted proteins revealed low molecular weight fragments for 59 proteins in conditioned media exposed to PK that were not observed in untreated controls. The most striking finding from this study was the appearance of fragmentation of 26 extracellular matrix-associated proteins including collagen isoforms 1-6 and11, nidogen-1 and -2, lysyl oxidase-like protein 1, and matrix metalloproteinase 19 in the presence of PK. We also demonstrated that PK induced the fragmentation of non-matrix proteins, including apolipoprotein E. This report further characterizes the astrocyte secretome and identifies novel potential targets of PK-induced proteolysis that may contribute to its effects on the brain following vascular injury.

19.
J Proteome Res ; 8(12): 5541-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19845401

ABSTRACT

Diabetic retinopathy is the most common microvascular complication caused by diabetes mellitus and is a leading cause of vision loss among working-age adults in developed countries. Understanding the effects of diabetes on the retinal proteome may provide insights into factors and mechanisms responsible for this disease. We have performed a comprehensive proteomic analysis and comparison of retina from C57BL/6 mice with 2 months of streptozotocin-induced diabetes and age-matched nondiabetic control mice. To explore the role of the angiotensin AT1 receptor in the retinal proteome in diabetes, a subgroup of mice were treated with the AT1 antagonist candesartan. We identified 1792 proteins from retinal lysates, of which 65 proteins were differentially changed more than 2-fold in diabetic mice compared with nondiabetic mice. A majority (72%) of these protein changes were normalized by candesartan treatment. Most of the significantly changed proteins were associated with metabolism, oxidative phosphorylation, and apoptotic pathways. An analysis of the proteomics data revealed metabolic and apoptotic abnormalities in the retina from diabetic mice that were ameliorated with candesartan treatment. These results provide insight into the effects of diabetes on the retina and the role of the AT1 receptor in modulating this response.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacology , Diabetic Retinopathy/metabolism , Eye Proteins/analysis , Proteome/drug effects , Retina/chemistry , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Animals , Apoptosis , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Biphenyl Compounds , Diabetes Mellitus/metabolism , Diabetic Retinopathy/drug therapy , Eye Proteins/metabolism , Metabolism , Mice , Mice, Inbred C57BL , Oxidative Phosphorylation , Proteomics , Streptozocin , Tetrazoles/pharmacology , Tetrazoles/therapeutic use
20.
Mol Cell Proteomics ; 8(8): 1878-90, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19460759

ABSTRACT

Colorectal cancer (CRC) is the third most common cancer worldwide and has poor prognosis. To identify the oncofetal proteins involved in CRC carcinogenesis, differentially expressed proteins among fetal colorectal tissues, CRC, and the paired tumor-adjacent normal colorectal tissues were investigated by a two-dimensional gel electrophoresis and MALDI-TOF/TOF-based proteomics approach. 42 protein spots were differentially expressed among these tissues, and 22 proteins were identified by MS analysis. Desmin and zinc finger protein 829 were found to be elevated in CRC tissue and fetal colorectal tissue compared with normal colorectal tissue. The elevated expression of desmin in CRC tissue and different developmental stages of fetus colon was confirmed by RT-PCR and Western blot analysis. Immunohistochemical analysis showed that the elevated expression of desmin was correlated with the severity and differentiation of CRC and decreased survival rate of CRC patients. Finally by developing a highly sensitive immunoassay, desmin could be detected in human serum and was significantly elevated in CRC patients compared with healthy volunteers. We propose that desmin be considered a potential oncofetal serum tumor marker for CRC that may have significance in the detection of patients with CRC.


Subject(s)
Biomarkers, Tumor/analysis , Colorectal Neoplasms/diagnosis , Desmin/analysis , Fetal Diseases/diagnosis , Proteomics/methods , Aged , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Blotting, Western , Colon/embryology , Colon/metabolism , Colon/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Desmin/genetics , Desmin/metabolism , Electrophoresis, Gel, Two-Dimensional , Enzyme-Linked Immunosorbent Assay , Female , Fetal Diseases/genetics , Fetal Diseases/metabolism , Gene Expression Regulation, Developmental , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Male , Middle Aged , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...