Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 266: 115551, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37832484

ABSTRACT

The increasing prevalence of antibiotic-resistant bacteria (ARB) from animal manure has raised concerns about the potential threats to public health. The bioconversion of animal manure with insect larvae, such as the black soldier fly larvae (BSFL, Hermetia illucens [L.]), is a promising technology for quickly attenuating ARB while also recycling waste. In this study, we investigated BSFL conversion systems for chicken manure. Using metagenomic analysis, we tracked ARB and evaluated the resistome dissemination risk by investigating the co-occurrence of antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and bacterial taxa in a genetic context. Our results indicated that BSFL treatment effectively mitigated the relative abundance of ARB, ARGs, and MGEs by 34.9%, 53.3%, and 37.9%, respectively, within 28 days. Notably, the transferable ARGs decreased by 30.9%, indicating that BSFL treatment could mitigate the likelihood of ARG horizontal transfer and thus reduce the risk of ARB occurrence. In addition, the significantly positive correlation links between antimicrobial concentration and relative abundance of ARB reduced by 44.4%. Moreover, using variance partition analysis (VPA), we identified other bacteria as the most important factor influencing ARB, explaining 20.6% of the ARB patterns. Further analysis suggested that antagonism of other bacteria on ARB increased by 1.4 times, while nutrient competition on both total nitrogen and crude fat increased by 2.8 times. Overall, these findings provide insight into the mechanistic understanding of ARB reduction during BSFL treatment of chicken manure and provide a strategy for rapidly mitigating ARB in animal manure.


Subject(s)
Diptera , Manure , Animals , Larva/genetics , Manure/analysis , Chickens/genetics , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Diptera/genetics , Bacteria , Drug Resistance, Microbial , Genes, Bacterial , Anti-Bacterial Agents/pharmacology
2.
Sci Total Environ ; 879: 163065, 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-36966826

ABSTRACT

The increasing prevalence of antibiotic resistance genes (ARGs) in animal manure has attracted considerable attention because of their potential contribution to the development of multidrug resistance worldwide. Insect technology may be a promising alternative for the rapid attenuation of ARGs in manure; however, the underlying mechanism remains unclear. This study aimed to evaluate the effects of black soldier fly (BSF, Hermetia illucens [L.]) larvae conversion combined with composting on ARGs dynamics in swine manure and to uncover the mechanisms through metagenomic analysis. Compared to natural composting (i.e. without BSF), BSFL conversion combined with composting reduced the absolute abundance of ARGs by 93.2 % within 28 days. The rapid degradation of antibiotics and nutrient reformulation during BSFL conversion combined with composting indirectly altered manure bacterial communities, resulting in a lower abundance and richness of ARGs. The number of main antibiotic-resistant bacteria (e.g., Prevotella, Ruminococcus) decreased by 74.9 %, while their potential antagonistic bacteria (e.g., Bacillus, Pseudomonas) increased by 128.7 %. The number of antibiotic-resistant pathogenic bacteria (e.g., Selenomonas, Paenalcaligenes) decreased by 88.3 %, and the average number of ARGs carried by each human pathogenic bacterial genus declined by 55.8 %. BSF larvae gut microbiota (e.g., Clostridium butyricum, C. bornimense) could help reduce the risk of multidrug-resistant pathogens. These results provide insight into a novel approach to mitigate multidrug resistance from the animal industry in the environment by using insect technology combined with composting, in particular in light of the global "One Health" requirements.


Subject(s)
Composting , Diptera , Humans , Swine , Animals , Larva , Manure/microbiology , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Genes, Bacterial
3.
BMC Infect Dis ; 20(1): 45, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31941459

ABSTRACT

BACKGROUND: Acinetobacter baumannii is a gram-negative aerobic bacillus that is commonly causes of hospital-acquired infections. Community-acquired pneumonia caused by Acinetobacter baumannii (CAP-Ab) is rare but fatal if diagnosis and treatment are delayed. Conventional culture of clinical specimens is the main method for clinical diagnosis of A. baumannii infections which may suffer from limited positive rate and is time consuming. Timely and precise diagnosis of CAP-Ab remains challenging. CASE PRESENTATION: A 66-year-old man with 24 h history of acute fever and dyspnea was admitted to our hospital. He was diagnosed as severe community acquired pneumonia (CAP), septic shock, respiratory failure and acute kidney injury. Next-generation sequencing (NGS) was performed on the patient's sputum and blood, which identified numerous A. baumannii nucleotide sequences in the sample of sputum and led to the rapid diagnosis and treatment of community acquired pneumonia caused by A. baumannii. This result was confirmed by subsequent sputum culture. CONCLUSIONS: This case described that the successful application of the next generation sequencing assisting the speedy diagnosis of A. baumannii infection provides a new idea for the timely diagnosis of CAP-Ab and highlights that NGS is a promising tool in rapid etiological diagnosis of acute and severe infectious diseases.


Subject(s)
Acinetobacter Infections/diagnosis , Acinetobacter baumannii/genetics , Community-Acquired Infections/diagnosis , High-Throughput Nucleotide Sequencing , Pneumonia, Bacterial/diagnosis , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Acute Kidney Injury/complications , Aged , Anti-Bacterial Agents/therapeutic use , China , Community-Acquired Infections/blood , Community-Acquired Infections/drug therapy , Cross Infection , Dyspnea/complications , Fever/complications , Hospitalization , Humans , Male , Microbial Sensitivity Tests , Pneumonia, Bacterial/blood , Pneumonia, Bacterial/drug therapy , Respiratory Insufficiency/complications , Shock, Septic/complications , Sputum/microbiology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...