Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Water Sci Technol ; 88(9): 2465-2472, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37966195

ABSTRACT

The pollution caused by microplastics (MPs) has gained global attention due to their potential risks to organisms and human health. The process of photo-aging, which plays a crucial role in the transformation of MPs in aquatic environments, has the potential to influence the ecological risk posed by these particles. Dissolved organic matter (DOM) is a prevalent photosensitizer in surface waters that has been shown to facilitate the transformation of various organic compounds by generating reactive oxygen species under light irradiation. The present study investigated the influence of humic acid (HA), a typical component of DOM, on the photo-aging process of polyvinyl chloride MPs (PVC-MPs), using Fourier transform infrared spectroscopy, as well as assessing the resulting ecological risk through bioassays. The results revealed that the presence of HA enhanced the photo-aging of PVC-MP. Moreover, the leachate exhibited higher acute and genetic toxicity under light irradiation when compared to dark conditions. Notably, the presence of HA significantly increased the toxicity of the leachate, emphasizing the need to consider the impact of DOM when assessing the ecological risk of MPs in surface waters. These findings contribute to a more comprehensive understanding of the potential risks associated with microplastic pollution in natural environments.


Subject(s)
Skin Aging , Water Pollutants, Chemical , Humans , Microplastics/toxicity , Plastics/toxicity , Dissolved Organic Matter , Polyvinyl Chloride/toxicity , Water Pollutants, Chemical/chemistry , Humic Substances/analysis
2.
J Biol Inorg Chem ; 26(1): 57-66, 2021 02.
Article in English | MEDLINE | ID: mdl-33386510

ABSTRACT

A novel quinoline fluorescent probe QNP ((E)-N'-(5-chloro-2-hydroxybenzylidene) quinoline-2-carbohydrazide) for detection of Al3+ ion was designed, synthesized and characterized. QNP displayed a high fluorescence enhancement in the presence of Al3+ ion in DMF:PBS (99:1, v/v) solution and the detection limit was as low as 1.25 µM with high selectivity and excellent sensitivity from 0 to 3 µM. The sensing ability of QNP towards Al3+ ion is attributed to the synergistic effect of PET and ICT. Furthermore, the binding stoichiometry between QNP and Al3+ ion is of 1:1 by Job's plot and mass spectrum, and the calculated binding constant is 4.29 × 108 M-1. The detection of Al3+ ion in water samples illustrates that QNP could be applied to the detection of practical samples in the environment. Bioimaging experiments on Hela cells, zebrafish and soybean root tissues demonstrate that it has potential application to investigate biological processes involving Al3+ ion within living cells. A quinoline-based turn-on fluorescence probe for the detection of Al3+ and its bioimaging in living cells, plant, and zebrafish.


Subject(s)
Aluminum/analysis , Fluorescent Dyes/chemistry , Hydrazones/chemistry , Quinolines/chemistry , Animals , Drinking Water/analysis , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/radiation effects , HeLa Cells , Humans , Hydrazones/chemical synthesis , Hydrazones/radiation effects , Limit of Detection , Plant Roots/chemistry , Quinolines/chemical synthesis , Quinolines/radiation effects , Glycine max/chemistry , Water Pollutants, Chemical/analysis , Zebrafish
3.
Analyst ; 145(1): 115-121, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31746826

ABSTRACT

Highly luminescent nitrogen and phosphorus co-doped graphene-analogous flakes (NPCGFs) were synthesized by a one-pot simple hydrothermal reaction using ß-cyclodextrin (ß-CD), vinylphosphoric acid (VPA), and o-phenylenediamine (oPD) as the precursors. VPA, as an important organic P-containing monomer, was selected as the phosphorus source to generate additional conjugated and effective binding sites on the surface of the NPCGFs. This synthetic strategy not only allows enhancement of structural rigidity, but also effectively eliminates surface traps of the NPCGFs, resulting in an improved fluorescence quantum yield (FL QY) of the NPCGFs. Additionally, oPD simultaneously acts as a nitrogen source and enables amino functionalisation of the NPCGF surface in the synthesis process. The NPCGFs (QY, 32.49%) are irregularly shaped with a typical diameter of approximately 54 nm and display strong fluorescence, with excitation/emission maxima of 360/445 nm. It was found that the NPCGFs can serve as a multifunctional FL probe for pH measurement and quercetin (Qc) detection. A linear relationship exists between the decrease in FL intensity and the concentration of Qc in the range from 0.35 to 30 µg mL-1 as well as the pH variation between 4.0 and 7.0. The probe was further applied to the determination of Qc in living cells.

4.
J Colloid Interface Sci ; 532: 12-23, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30077062

ABSTRACT

Marinepollution andindustrial wastewater have caused serious environmental pollution, thereby resulting into an alarming damage to public health in the past decades, hence the high demand for, cost effective, energy-efficient oil-water separation technologies for the removal of oil contaminants from such water. Herein, we report a facile method to fabricate superhydrophobic/superoleophilic membrane by immersing a polyimide (PI)-based nanofibrous membrane into a water/ethanol/ammonia/dopamine mixture, followed by modification with 1H, 1H, 2H, 2H-perfluorodecanethiol (PFDT). The PI-based membrane exhibited water contact angle (WCA) above 153°, while the oil contact angle (OCA) approached 0°, thereby promoting an outstanding chemical stability which sustained its superhydrophobicity when immersed in aqueous solutions at different pH values. Additionally, the PI-based membrane possesses ultrahigh flux, high separation efficiency and good reusability in oil-water separation. The aforementioned properties, as well as the easily scale-up preparation process ensure that this promising as-fabricated membrane can be applied for practical environmental applications including treatment of oily wastewater and oil spillage clean-up.

5.
RSC Adv ; 8(66): 37828-37834, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-35558635

ABSTRACT

Environmentally friendly probe materials for detecting copper ions were studied in this research. Fluorescent emission of quercetin (Q) was observed in the buffer solution (pH = 7.40), and (2-hydroxypropyl)-ß-cyclodextrin (CD) could enhance the fluorescence intensity of Q. The UV/Vis spectrum showed that the Q-CD system was formed. After adding copper ions into the Q-CD system, the fluorescent emission intensity of Q-CD system generated quenching, and other metal ions could not bring change, which meant the Q-CD system showed good selectivity to copper ions. The fluorescence titration spectra showed that the concentration of copper ions was inversely proportional to fluorescence intensity, and gave a good linear change in fluorescence emission intensity in response to the concentration of copper ions ranging from 5.0 × 10-8 to 8.3 × 10-6 mol L-1. The calibration curve of the relationship between the intensity and copper ions concentration was y = -9.24x + 844.51 (R 2 = 0.997). The detection limit of copper ions was measured to be 2.3 × 10-8 mol L-1. The probable mechanism was studied by UV/Vis spectrum and Job's plot method. The results indicated that Q-CD-Cu(ii) complex was formed and intramolecular charge transfer (ICT) took place. At last, the probe was successfully applied for determination of copper ions in water bodies, vegetables and fruits with good recovery. The study showed that Q-CD system could detect copper ions as a fluorescent probe with high selectivity, sensitivity and larger linearity range.

7.
Carbohydr Polym ; 151: 1240-1244, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27474676

ABSTRACT

In this study we present the use of co-axial electrospinning to produce core-shell composite micro-/nano- fibers of polyurethane (PU) and cellulose acetate phthalate (CAP). The designed fibers possess enhanced mechanical properties with a tensile strength of 13.27±2.32MPa, which is a clear improvement over the existing CAP fibers that suffer from a poor mechanical strength (0.2±0.03MPa). The CAP imparts pH responsiveness to the core-shell structure giving the fibers potential for "semen sensitive" (intravaginal) drug delivery.


Subject(s)
Cellulose/analogs & derivatives , Drug Carriers/chemistry , Electricity , Polyurethanes/chemistry , Vagina/metabolism , Animals , Cell Line , Cellulose/chemistry , Drug Carriers/toxicity , Drug Liberation , Female , Hydrogen-Ion Concentration , Mechanical Phenomena , Mice , Rhodamines/chemistry
8.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(11): 3582-7, 2016 Nov.
Article in Chinese | MEDLINE | ID: mdl-30198691

ABSTRACT

Quercetin (Q) is one of the most common flavonoids present in roots, stems, leaves, flowers and fruits of most plants. In this study, a quercetin-based fluorescent probe for detecting fluorid ions had been proposed. With good selectivity and sensitivity for fluorid ions, Q-based fluorescent probe was easier to prepare, more eco-friendly and more innoxious compared with traditional fluorescent probe obtained by organic chemistry synthesis operation. There was a major fluorescence emission peak at 500 nm for Q in dimethyl sulfoxide (DMSO) when the excitation wavelength was 390 nm. The changes of fluorescence spectra were investigated before and after adding different anions into Q solution. The fluorescence emission intensity of Q even had no change when adding Cl-,Br-,I-,ClO-4,H2PO-4, respectively. While adding fluorid ions, the fluorescence emission intensity of Q was decreased obviously, which suggested fluorid ions could induce fluorescence quenching of Q in DMSO. And the fluorescence emission intensity of Q-F- system had almost no significant change when adding other anions (Cl-,Br-,I-,ClO-4,H2PO-4), which meant the progress for detecting fluorid ions didn't be affected by other anions, and Q showed a good selectivity for fluorid ions. The fluorescence titration spectra showed that the fluorescence emission intensity of Q was decreased with the increase of concentration of fluorid ions, and they were in concentration-dependent manner. The fluorescence titration curve exhibited that the Q as fluorescent probe can be applied to the quantification of fluorid ions with a good linearity (R2=0.991), linear range of 1.0~8.0×10-6 mol·L-1 and the detection limit of 1.0×10-7 mol·L-1. Not only the changes appeared in fluorescence spectra, but also the changes appeared in UV-visible spectra, compared with Q absorption spectrum, the location of band at 375 nm had no change after adding Cl-,Br-,I-,ClO-4,H2PO-4, respectively. However, when adding fluorid ions, the band at 375 nm was shifted to 394 nm, and the color of the solution was changed into dark yellow, which revealed the interactions between Q and fluorid ions. The probable mechanism of fluorid ions inducing fluorescence quenching of Q was obtained with 1H NMR spectrum and the changes of fluorescence emission intensity of Q-F- system in different polar solvents (DMSO containing different concentration of water). The interaction mode about Q and fluorid ions in DMSO was related with hydrogen bond. Both experiments suggested that the possible recognition mechanism on fluorid ions was: fluorid ions were destroyed or weakened by original hydrogen bonds, and were promoted charge transfer within quercetin molecule, which resulted in fluorescence intensity decreasing of quercetin. This method was successfully applied in detecting fluorid ions of samples in DMSO with good recovery.

9.
Biosens Bioelectron ; 39(1): 342-5, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-22902536

ABSTRACT

Electrochemiluminescence (ECL) of TiO(2) nanocrystals with different crystal styles modified fluorine-doped tin oxide (FTO) electrode was investigated in H(2)O(2) solution. The amorphous TiO(2) nanospheres were facilely synthesized by the hydrothermal and condensation method. Crystal TiO(2), namely anatase and rutile, were prepared by calcination of the amorphous TiO(2) nanospheres at 450 and 800°C, respectively. The transmission electron microscope (TEM) and electron diffraction pattern were used to characterize the obtained TiO(2) nanoparticles morphology and the corresponding crystal styles. The electrochemical and ECL behaviors were investigated by cyclic voltammetry. The ECL quenching was observed by introduction of gold nanoparticles. Based on the quenching effect, a sensitive glucose ECL biosensor as a model was fabricated by in-situ growing-up gold seeds in AuCl(4)(-) solution induced by biologically generated H(2)O(2). The linear range to detect glucose is from 5.0×10(-7)M to 4.0×10(-3)M with the limit of detection of 2.5×10(-7)M.


Subject(s)
Biosensing Techniques/methods , Glucose/analysis , Gold/chemistry , Nanoparticles/chemistry , Titanium/chemistry , Aspergillus niger/enzymology , Glucose/metabolism , Glucose Oxidase/metabolism , Halogenation , Hydrogen Peroxide/metabolism , Luminescent Measurements/methods , Nanoparticles/ultrastructure , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...