Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 237(Pt 2): 116974, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37625537

ABSTRACT

The wide use of antibiotics in aquaculture has triggered global ecological security issue. Microalgal bioremediation is a promising strategy for antibiotics elimination due to carbon recovery, detoxification and various ecological advantages. However, a lack of understanding with respect to the corresponding regulation mechanism towards antibiotic stress may limit its practical applicability. The microalga Scenedesmus obliquus was shown to be capable of effectively eliminating ciprofloxacin (CIP), which is a common antibiotic used in aquaculture. However, the corresponding transcriptional alterations require further investigation and verification at the metabolomic level. Thus, this study uncovered the metabolomic profiles and detailed toxic and defense mechanisms towards CIP in S. obliquus using untargeted metabolomics. The enhanced oligosaccharide/polyol/lipid transport, up-regulation of carbohydrate and arachidonic acid metabolic pathways and increased energy production via EMP metabolism were observed as defense mechanisms of microalgal cells to xenobiotic CIP. The toxic metabolic responses included: (1) down-regulation of parts of mineral and organic transporters; (2) electrons competition between antibiotic and NAD during intracellular CIP degradation; and (3) suppressed expression of the hem gene in chlorophyll biosynthesis. This study describes the metabolic profile of microalgae during CIP elimination and reveals the key pathways from the perspective of metabolism, thereby providing information on the precise regulation of antibiotic bioremediation via microalgae.

2.
Water Res ; 242: 120267, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37390651

ABSTRACT

Herein, a novel triple-layered heterojunction catalytic cathode membrane (PVDF/rGO/TFe/MnO2, TMOHccm) was reported and applied in seawater electro membrane reactor assisted electrolytic cell system (SEMR-EC), achieving increased properties for cyanide wastewater treatment. Hydrophilic TMOHccm exhibits higher electrochemical activity (qT* 1.11 C cm-2, qo* 0.03 C cm-2), indicating excellent electron transfer efficiency. Further analysis shows a one-electron redox cycle of exposed transition metal oxides (TMOs) on rGO support mediated oxygen reduction reaction (ORR) process, and calculated results of density functional theory (DFT) demonstrates positive Bader charge (72 |e|) of synthesized catalyst. The developed SEMR-EC was implemented in intermittent-stream operation for treating cyanide wastewater, the system achieved optimized decyanation and carbon removal performance (CN- 100%, TOC 88.49%). Hyperoxidation active species produced SEMR-EC including hydroxyl, sulfate, and reactive chlorine species (RCS) was confirmed. The proposed mechanistic explanation indicated multiple removal pathways relevant to cyanide, organic matter, and iron were elucidated, and the engineering applications prospects were highlighted by cost (5.61 $) and benefit (Ce 399.26 mW m-2 $-1, EFe 248.11 g kWh-1) analysis of the system.


Subject(s)
Carbon , Water Pollutants, Chemical , Oxides/chemistry , Manganese Compounds , Oxidation-Reduction , Electrodes , Cyanides/analysis , Water Pollutants, Chemical/chemistry
3.
Materials (Basel) ; 15(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36431636

ABSTRACT

As emerging pollutants, pharmaceutical and personal care products (PPCPs) have received extensive attention due to their high detection frequency (with concentrations ranging from ng/L to µg/L) and potential risk to aqueous environments and human health. Advanced oxidation processes (AOPs) are effective techniques for the removal of PPCPs from water environments. In AOPs, different types of free radicals (HO·, SO4·-, O2·-, etc.) are generated to decompose PPCPs into non-toxic and small-molecule compounds, finally leading to the decomposition of PPCPs. This review systematically summarizes the features of various AOPs and the removal of PPCPs by different free radicals. The operation conditions and comprehensive performance of different types of free radicals are summarized, and the reaction mechanisms are further revealed. This review will provide a quick understanding of AOPs for later researchers.

4.
J Hazard Mater ; 424(Pt C): 127664, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34837830

ABSTRACT

In this study, a novel bio-electroreduction microbial fuel cell (BEMFC) assisted by stainless-steel based Cobalt/Molybdenum/Manganese (Co/Mo/Mn-SS) polycrystalline catalytic electrode was used to achieve high recovery to silver. The exoelectrogens (Shewanella sp. etc.) using organic wastewater (the inflow was controlled at 1.2 L d-1) as nutrient matrix in the anode chamber generated electrons, while silver ions were simultaneously electroreduced and electrodeposited on the surface of the catalytic electrode as electron acceptors. Silver nanoplates could be observed directly. The products of electroreduction on the cathode were analyzed by Scanning Electron Microscopy (SEM), Transmission Electron Microscope (TEM), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffractometer (XRD), and the results of electrochemical characterization confirmed the existence of silver in the products. In the operation, the silver ions were in-situ recovered and enriched from the initial concentration of 20-300 mg L-1 to almost complete recovery (8-18 h), with the maximum power density of 1008.2 mW m-2 and 5.5 A m-2 current density. The recovery efficiency of silver in the BEMFC using the Co/Mo/Mn-SS electrode was up to 9.60 kg m-2h-1, and the energy efficiency was 27.8 kg kWh-1. Under the continuous flow operation mode, the BEMFC still achieved 90.2% recovery efficiency of the silver.


Subject(s)
Bioelectric Energy Sources , Cobalt , Electricity , Electrodes , Ions , Manganese , Molybdenum , Silver , Stainless Steel
5.
ACS Omega ; 6(49): 33961-33968, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34926943

ABSTRACT

In this study, Cu-BTC, a kind of metal-organic framework, was used as an adsorbent to selectively adsorb methylene blue (abbreviated as MB) from dye mixed wastewater. The synthesized Cu-BTC was characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results indicated that the synthesized Cu-BTC have an octahedral structure, with its specific surface area at 45.16 m2/g and the pore sizes at 35-40 nm. The influence of various parameters including the initial solution pH, temperature, ionic strength, initial concentration, and contact time on MB adsorption by Cu-BTC was investigated in detail. The adsorption capacity of Cu-BTC toward MB was optimized at the pH value of 8, with a lower temperature and a higher ionic strength. The adsorption isotherm was found to fit well with the Langmuir model, and the kinetic curve was found to be in good agreement with the pseudo-second-order kinetic model. The adsorption mechanism was revealed to be the combined effects of hydrophobicity and electrostatic adsorption. The synthesized Cu-BTC adsorption material showed great potential for recovering MB from dye-mixed wastewater.

6.
Bioresour Technol ; 297: 122507, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31830718

ABSTRACT

The idea is immensely attractive if copper ions can be completely removed in wastewater. In this study, a novel bioelectrochemical system assisted microelectrolysis was developed for the enhanced removal of copper. One abandoned aluminium was used as anode and graphite/activated carbon as biological anode, and a bifunctional catalytic conductive membrane as cathode. Under the combined action of electroreduction and electroflocculation, copper ions directly pumped into the cathode chamber were efficiently treated, and organic matter was synchronously removed (Copper ions >99.9%, TOC >98.2%, COD >97.9%, NH4+-N >94.5% and TP >94.9%). The reactions of primary batteries and microelectrolysis in anode chamber significantly enhanced the self-production capacity of BES (maximum power density of 2250 mW m-3 at current density 10.65 mA m-2, maximum cell voltage of 1.4 V). The results confirmed the application potential of bioelectrochemical system assisted microelectrolysis for the removal of copper.


Subject(s)
Bioelectric Energy Sources , Graphite , Charcoal , Copper , Electrodes , Wastewater
7.
Bioresour Technol ; 249: 24-34, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29040856

ABSTRACT

A novel bio-electrochemical system (BES) was developed by integrating micro-electrolysis/electro-flocculation from attaching a sacrificing Al anode to the bio-anode, it effectively treated high load wastewater with energy recovery (maximum power density of 365.1 mW/m3 and a maximum cell voltage of 0.97 V), and achieving high removals of COD (>99.4%), NH4+-N (>98.7%) and TP (>98.6%). The anode chamber contains microbes, activated carbon (AC)/graphite granules and Al anode. It was separated from the cathode chamber containing bifunctional catalytic and filtration membrane cathode (loaded with Fe/Mn/C/F/O catalyst) by a multi-medium chamber (MMC) filled with manganese sand and activated carbon granules, which replaced expensive PEM and reduced cost. An air contact oxidation bed for aeration was still adopted before liquid entering the cathode chamber. micro-electrolysis/electro-flocculation helps in achieving high removal efficiencies and contributes to membrane fouling migration. The increase of activated carbon in the separator MMC increased power generation and reduced system electric resistance.


Subject(s)
Flocculation , Wastewater , Bioelectric Energy Sources , Charcoal , Electrodes , Electrolysis
8.
Bioresour Technol ; 238: 472-483, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28475989

ABSTRACT

A novel combined system integrating MFC and electric membrane bioreactor (EMBR) was developed, in which a quartz sand chamber (QSC) was used, replacing expensive proton exchange membrane (PEM). An air contact oxidation bed (ACOB) and embedded trickling filter (TF) with filled volcano rock, was designed to increase dissolved oxygen (DO) in cathodic EMBR to save aeration cost. Membrane fouling in EMBR was successful inhibited/reduced by the generated bioelectricity of the system. The combined system demonstrated superior effluent quality in removing chemical oxygen demand (>97%) and ammonia nitrogen (>93%) during the stable operation, and the phosphorus removal was about 50%. Dominant bacteria (Nitrosomonas sp.; Comamonas sp.; Candidatus Kuenenia) played important roles in the removal of organic matter and ammonia nitrogen. The system has good application prospects in the efficient use of water and the development of sustainable wastewater recycling technology.


Subject(s)
Bioelectric Energy Sources , Bioreactors , Protons , Sewage , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...