Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Metabolites ; 12(11)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36355155

ABSTRACT

Triacylglycerol (TAG) accumulation and oxidative damage in hepatocytes induced by high circulating concentrations of fatty acids (FA) are common after calving. In order to clarify the role of myricetin on lipid metabolism in hepatocytes when FA metabolism increases markedly, we performed in vitro analyses using isolated primary calf hepatocytes from three healthy female calves (1 d old, 42 to 48 kg). Two hours prior to an FA challenge (1.2 mM mix), the hepatocytes were treated with 100 µM (M1), 50 µM (M2), or 25 µM (M3) of myricetin. Subsequently, hepatocytes from each donor were challenged with or without FA for 12 h in an attempt to induce metabolic stress. Data from calf hepatocyte treatment comparisons were assessed using two-way repeated-measures (RM) ANOVA with subsequent Bonferroni correction. The data revealed that hepatocytes challenged with FA had greater concentrations of TAG and nonesterified fatty acids (NEFA), oxidative stress-related MDA and H2O2, and mRNA and protein abundance of lipid synthesis-related SREBF1 and inflammatory-related NF-κB. In addition, the mRNA abundance of the lipid synthesis-related genes FASN, DGAT1, DGAT2, and ACC1; endoplasmic reticulum stress-related GRP79 and PERK; and inflammatory-related TNF-α also were upregulated. In contrast, the activity of antioxidant SOD (p < 0.01) and concentrations of GSH (p < 0.05), and the protein abundance of mitochondrial FA oxidation-related CPT1A, were markedly lower. Compared with FA challenge, 50 and 100 µM myricetin led to lower concentrations of TAG, NEFA, MDA, and H2O2, as well as mRNA and protein abundance of SREBF1, DGAT1, GRP78, and NF-κB. In contrast, the activity of SOD (p < 0.01) and mRNA and protein abundance of CPT1A were markedly greater. Overall, the results suggest that myricetin could enhance the antioxidant capacity and reduce lipotoxicity, endoplasmic reticulum stress, and inflammation. All of these effects can help reduce TAG accumulation in hepatocytes.

2.
J Dairy Sci ; 105(9): 7773-7786, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35940922

ABSTRACT

Ketosis is a common metabolic disorder in peripartal dairy cows that is caused by excessive mobilization of fat and incomplete hepatic metabolism of fatty acids (FFA). Recent data in nonruminant models revealed that sortilin 1 (SORT1) is involved in a variety of lipid metabolism-related diseases. It plays important roles in the regulation of triglyceride (TAG) and total cholesterol (TC) levels. In this study, we first used liver biopsies from healthy cows (serum ß-hydroxybutyrate concentration <0.6 mM) and cows diagnosed with clinical ketosis (serum ß-hydroxybutyrate concentration >3.0 mM) to assess alterations in cholesterol synthesis, transport, and excretion. Then, to assess mechanistic links between SORT1 and fatty acid-mediated cholesterol metabolism, hepatocytes isolated from 4 healthy female calves (1 d old, 35-45 kg) were challenged with or without a mixture of free fatty acids (FFA; 1.2 mM) to induce metabolic stress. Hepatocytes were then treated with empty adenovirus vectors (with green fluorescent protein; Ad-GFP) or with SORT1-overexpressing adenovirus (Ad-SORT1) for 6 h or with SORT1 inhibitor (SORT1i) for 2 h, followed by a challenge with (Ad-GFP+FFA, Ad-SORT1+FFA, or SORT1i+FFA) or without (Ad-GFP, Ad-SORT1, or SORT1i) 1.2 mM FFA mixture for 12 h. Data analysis of calf hepatocyte treatment comparisons were assessed by 2-way ANOVA, and multiplicity for each experiment was adjusted using the Bonferroni procedure. Expression levels of factors related to cholesterol synthesis, transport, and excretion in liver tissue of cows with ketosis was lower. Hepatocytes challenged with FFA had lower concentrations of TC and mRNA and protein abundances of sterol regulatory element-binding protein 2 (SREBF2), acetyl acyl coenzyme A-cholesterol acyltransferase 2 (ACAT2), ATP-binding cassette transporter A1 (ABCA1), ABC subfamily G member 5 (ABCG5), and ABC subfamily G member 8 (ABCG8). Compared with FFA challenge alone, SORT1i + FFA led to greater protein abundance of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR), ACAT2, and ABCG5, and greater mRNA abundance of ABCG5. Compared with FFA challenge alone, SORT1 overexpression led to lower protein abundance of SREBF2. In contrast, protein abundance of ABCA1 was greater. Overall, our data suggested that exogenous FFA induced abnormal cholesterol metabolism in hepatocytes, whereas a high abundance of SORT1 affected cholesterol esterification and potentially influx into bile. Thus, downregulation of hepatic SORT1 might be a cholesterol-regulated protective mechanism in the presence of a marked increase in FFA.


Subject(s)
Hepatocytes , Ketosis , 3-Hydroxybutyric Acid/metabolism , Adaptor Proteins, Vesicular Transport , Animals , Cattle , Cholesterol/metabolism , Fatty Acids/metabolism , Fatty Acids, Nonesterified/metabolism , Female , Hepatocytes/metabolism , Ketosis/metabolism , Ketosis/veterinary , Lipid Metabolism/physiology , Liver/metabolism , RNA, Messenger/metabolism
3.
J Dairy Sci ; 105(6): 5420-5434, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35469640

ABSTRACT

High circulating concentrations of fatty acids cause triacylglycerol (TAG) accumulation in hepatocytes of dairy cows, a common metabolic disorder after calving. Low secretion of apolipoprotein B (APOB) and very low density lipoprotein (VLDL) are thought to be the major factors for TAG accumulation in hepatocytes. Recent data in nonruminant models revealed that sortilin 1 (SORT1) is a key regulator of VLDL secretion in part due to its ability to bind APOB. Thus, SORT1 could play a role in the susceptibility of dairy cows to develop fatty liver. To gain mechanistic insights in vivo and in vitro, we performed experiments using liver biopsies or isolated primary hepatocytes. For the in vivo study, blood and liver samples were collected from healthy multiparous dairy cows (n = 6; 9.0 ± 2.1 d in milk) and cows with fatty liver (n = 6; 9.7 ± 2.2 d in milk). In vitro, hepatocytes isolated from 4 healthy female calves (1 d old, 42-51 kg) were challenged with (fatty acids) or without (control) a 1.2 mM mixture of fatty acids in an attempt to induce metabolic stress. Furthermore, hepatocytes were treated with empty adenovirus vectors (Ad-GFP) or SORT1 overexpressing adenovirus (Ad-SORT1) for 6 h, or SORT1 inhibitor for 2 h followed by a challenge with (Ad-GFP + fatty acids, Ad-SORT1 + fatty acids, or SORT1 inhibitor + fatty acids) or without (Ad-GFP, Ad-SORT1, or SORT1 inhibitor) the 1.2 mM mixture of fatty acids for 12 h. Data from liver biopsies were compared using a 2-tailed unpaired Student's t-test. Data from calf hepatocytes were analyzed by one-way ANOVA. Data revealed that both fatty liver and in vitro challenge with fatty acids were associated with greater concentrations of TAG and mRNA and protein abundance of SORT1, SREBF1, FASN, and ACACA. In contrast, mRNA and protein abundance of CPT1A and APOB, and mRNA abundance of MTTP were markedly lower. Compared with fatty acid challenge alone, SORT1 overexpression led to greater concentration of TAG and mRNA abundance of SREBF1, FASN, ACACA, DGAT1, and DGAT2, and protein abundance of SREBF1, FASN, and ACACA. In contrast, concentration of secreted VLDL-APOB and mRNA abundance of APOB and MTTP, and protein abundance of CPT1A, APOB, and MTTP were lower. Compared with fatty acid challenge alone, SORT1 inhibitor + fatty acids led to lower concentrations of TAG and mRNA abundance of SREBF1, FASN, and DGAT2, and protein abundance of FASN, ACACA, and DGAT1. Concentrations of secreted VLDL-APOB and mRNA abundance of CPT1A and protein abundance of CPT1A and APOB were greater. Overall, in vitro data suggested that greater SORT1 abundance induced by exogenous fatty acids caused a reduction in VLDL-APOB secretion and increased hepatocyte TAG synthesis. Such mechanism was also apparent in tissue from cows with fatty liver. Thus, targeted downregulation of hepatic SORT1 could represent a viable mechanism to unload lipid during conditions where the influx of fatty acids increases markedly.


Subject(s)
Fatty Liver , Lipid Metabolism , Adaptor Proteins, Vesicular Transport , Animals , Apolipoproteins B , Cattle , Fatty Acids/metabolism , Fatty Liver/veterinary , Female , Lipoproteins, VLDL/metabolism , Liver/metabolism , RNA, Messenger/metabolism , Triglycerides/metabolism
5.
Exp Ther Med ; 17(4): 3021-3028, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30936973

ABSTRACT

The present study investigated the key genes, which cause switch from adipogenic to osteogenic differentiation of human mesenchymal stem cells (hMSCs). The transcriptomic profile of hMSCs samples were collected from Array Express database. Differential expression network was constructed by calculating the Pearson's correlation coefficient and ranked according to their topological features. The top 5% genes with degree ≥2 were selected as ego genes. Following the KEGG pathway enrichment analysis and the relevant miRNAs prediction, the miRNA-mRNA-pathway networks were constructed by combining the miRNA-mRNA pairs and mRNA-pathway pairs together. In total, we obtained 84, 119, 94 and 97 ego-genes in B, BI, BT and BTI groups, and DLGAP5, DLGAP5, NUSAP1 and NDC80 were the ego-genes with the highest z-score of each group, respectively. Beginning from each ego-gene, we identified 2 significant ego-modules with gene size ≥4 in group BI, and the ego-genes were PBK and NCOA3, respectively. Through KEGG pathway analysis, we found that most of the pathways enriched by ego-genes were associated with gene replication and repair, and cell proliferation. According to the miRNA prediction results, we found that some of the predicted miRNAs have been validated to be the regulatory miRNAs of these corresponding mRNAs. Finally we constructed a miRNA-mRNA-pathway network by integrating the miRNA-mRNA and mRNA-pathway pairs together. The constructed network gives us a more comprehensive understanding of the mechanism of osteogenic differentiation of hMSCs.

6.
Oncol Lett ; 15(1): 1067-1071, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29399167

ABSTRACT

Osteosarcoma is the most common type of malignant tumor arising from bone in children and adolescents. Accumulating evidences have shown the aberrant expression of numerous miRNAs is associated with the development and metastasis of osteosarcoma. The present study was conducted to investigate miR-27a expression in osteosarcoma tissues and cells. In the present study, quantitative RT-qPCR was used to measure the expression levels of miRNA and mRNA in osteosarcoma tissues and cells. Transwell assays were used to detect the effects of miR-27a on the invasive and migratory potential of cells. Luciferase reporter and western blot analysis were conducted to confirm cyclin G1 (CCNG1) as the target gene of miR-27a. The results showed that miR-27a was significantly upregulated in human osteosarcoma tissues and cell lines. The western blot analysis revealed that the overexpression of miR-27a suppressed CCNG1 protein expression. Luciferase reporter assays confirmed that CCNG1 is a direct target of miR-27a in osteosarcoma cells. The results suggest that miR-27a downregulates CCNG1 expression in osteosarcoma and acts as an oncogene directly targeting CCNG1. Thus, the miR-27a/CCNGI axis is a potential therapeutic target for human osteosarcoma.

7.
Aging (Albany NY) ; 10(1): 131-143, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29348392

ABSTRACT

The effects of bleomycin and rapamycin on cellular senescence and differentiation of rabbit annulus fibrosus stem cells (AFSCs) were investigated using a cell culture model. The results showed that bleomycin induced cellular senescence in AFSCs as evidenced by senescence-associated secretory phenotype. The morphology of AFSCs was changed from cobblestone-like cells to pancake-like cells. The senescence-associated ß-galactosidase activity, the protein expression of P16 and P21, and inflammatory-related marker gene levels IL-1ß, IL-6, and TNF-α were increased in bleomycin-treated AFSCs in a dose-dependent manner. Rapamycin treatment decreased the gene expression of MMP-3, MMP-13, IL-1ß, IL-6, TNF-α, and protein levels of P16 and P21 in bleomycin-treated AFSCs. Furthermore, neither bleomycin nor rapamycin changed the ribosomal S6 protein level in AFSCs. However, the phosphorylation of the ribosomal S6 protein was increased in bleomycin-treated AFSCs and decreased in rapamycin-treated AFSCs. AFSCs differentiated into adipocytes, osteocytes, and chondrocytes when they were cultured with respective differentiation media. Rapamycin inhibited multi-differentiation potential of AFSCs in a concentration-dependent manner. Our findings demonstrated that mammalian target of rapamycin (mTOR) signaling affects cellular senescence, catabolic and inflammatory responses, and multi-differentiation potential, suggesting that potential treatment value of rapamycin for disc degenerative diseases, especially lower back pain.


Subject(s)
Annulus Fibrosus/drug effects , Cellular Senescence/drug effects , Sirolimus/pharmacology , Stem Cells/drug effects , Analysis of Variance , Animals , Annulus Fibrosus/pathology , Bleomycin/pharmacology , Blotting, Western , Disease Models, Animal , Gene Expression , Humans , Intervertebral Disc Degeneration/prevention & control , Lumbar Vertebrae , Rabbits , Real-Time Polymerase Chain Reaction , Stem Cells/pathology
8.
Article in Chinese | MEDLINE | ID: mdl-16683438

ABSTRACT

OBJECTIVE: To evaluate lumbar laminotomy and replantation in prevention of spinal unstability and peridural adhesion after laminectomy. METHODS: From February 1995 to March 2001, a total of 169 patients (96 males, 73 females, aged 22-63) with lesions in the lumbar vertebral canals underwent surgery, in which the lesions were removed after laminectomy and then the excised laminae were replanted. RESULTS: The follow-up for 5-9 years showed that all the patients had no complications after the lesions were removed. According to the evaluation criteria formulated by WANG Yongti, 81 patients had an excellent result, 67 had a good result, 19 had a fair result, and 2 had a poor result. 87.6% of the patients obtained quite satisfactory results. The X-ray films demonstrated that the replanted laminae obtained bony healing and the spine was stable. The CT scanning demonstrated that the canals were enlarged with a smooth and glossy interior. CONCLUSION: Lumbar laminotomy and replantation is reasonable in design and convenient in performance, which can be promoted as a basic operation in spinal surgery.


Subject(s)
Laminectomy/methods , Lumbar Vertebrae/surgery , Replantation , Adult , Female , Follow-Up Studies , Humans , Lumbar Vertebrae/diagnostic imaging , Male , Middle Aged , Radiography
SELECTION OF CITATIONS
SEARCH DETAIL
...