Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Gerontology ; 69(9): 1076-1094, 2023.
Article in English | MEDLINE | ID: mdl-37348478

ABSTRACT

INTRODUCTION: Attenuating cardiac fibroblasts activation contributes to reducing excessive extracellular matrix deposition and cardiac structural remodeling in hypertensive hearts. Acacetin plays a protective role in doxorubicin-induced cardiomyopathy and ischemia/reperfusion injury. The aim of this study was to investigate the potential molecular mechanisms underlying the protective role of acacetin on hypertension-induced cardiac fibrosis. METHODS: Echocardiography, histopathological methods, and Western blotting techniques were used to evaluate the anti-fibrosis effects in spontaneous hypertensive rat (SHR) which were daily intragastrically administrated with acacetin (10 mg/kg and 20 mg/kg) for 6 weeks. Angiotensin II (Ang II) was used to induce cellular fibrosis in human cardiac fibroblasts (HCFs) in the absence and presence of acacetin treatment for 48 h. RESULTS: Acacetin significantly alleviated hypertension-induced increase in left ventricular (LV) posterior wall thickness and LV mass index in SHR. The expressions of collagen-1, collagen-III, and alpha-smooth muscle actin (α-SMA) were remarkedly decreased after treatment with acacetin (n = 6, p < 0.05). In cultured HCFs, acacetin significantly attenuated Ang II-induced migration and proliferation (n = 6, p < 0.05). Moreover, acacetin substantially inhibited Ang II-induced upregulation of collagen-1 and collagen-III (n = 6, p < 0.05) and downregulated the expression of alpha-SMA in HCFs. Additionally, acacetin decreased the expression of TGF-ß1, p-Smad3/Smad3, and p-AKT and p-mTOR but increased the expression of Smad7 (n = 6, p < 0.05). Further studies found that acacetin inhibited TGF-ß1 agonist SRI and AKT agonist SC79 caused fibrotic effect. CONCLUSION: Acacetin inhibits the hypertension-associated cardiac fibrotic processes through regulating TGF-ß/Smad3, AKT/mTOR signal transduction pathways.


Subject(s)
Cardiomyopathies , Hypertension , Humans , Rats , Animals , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , Myocardium/metabolism , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Signal Transduction , Collagen/metabolism , Collagen/pharmacology , Collagen Type I/metabolism , Collagen Type I/pharmacology , Hypertension/drug therapy , TOR Serine-Threonine Kinases , Fibroblasts/pathology , Fibrosis
SELECTION OF CITATIONS
SEARCH DETAIL
...