Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35163425

ABSTRACT

Root-knot nematodes (RKNs) are devastating parasites that invade thousands of plants. In this study, five RKN effectors, which might interact with Prunussogdiana resistance protein PsoRPM3, were screened and identified. In situ hybridisation results showed that MiCal, MiGST_N_4, MiEFh and MiACPS are expressed in the subventral oesophageal glands (SvG), and MiTSPc hybridization signals are found in the dorsal esophageal gland (DG) of Meloidogyne incognita in the pre-J2. RT-qPCR data indicated that the expression of MiCal, MiGST_N_4, MiEFh, and MiACPS genes are highly expressed in M. incognita of pra-J2 and J3/J4 stages. The expression of MiTSPc increased significantly in the female stage of M. incognita. Moreover, all effectors found in this study localize in the cytoplasm and nucleus when transiently expressed in plant cells. In addition, MiGST_N_4, MiEFh, MiACPS and MiTSPc can elicit the ROS burst and strong hypersensitive response (HR), as well as significant ion leakage. Our data suggest that MiGST_N_4, MiEFh, MiACPS and MiTSPc effectors may be involved in triggering the immune response of the host plant.


Subject(s)
Helminth Proteins/genetics , Helminth Proteins/metabolism , Prunus/growth & development , Tylenchoidea/pathogenicity , Animals , Disease Resistance , Host-Parasite Interactions , Life Cycle Stages , Plant Proteins/metabolism , Prunus/metabolism , Prunus/parasitology , Sequence Analysis, DNA , Tissue Distribution , Tylenchoidea/genetics , Tylenchoidea/growth & development , Tylenchoidea/metabolism , Up-Regulation
2.
Plants (Basel) ; 10(8)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34451606

ABSTRACT

The root-knot nematode (Meloidogyne incognita) causes huge economic losses in the agricultural industry throughout the world. Control methods against these polyphagous plant endoparasites are sparse, the preferred one being the deployment of plant cultivars or rootstocks bearing resistance genes against Meloidogyne species. Our previous study has cloned one resistance gene, PsoRPM3, from Xinjiang wild myrobalan plum (Prunus sogdiana). However, the function of PsoRPM3 remains elusive. In the present study, we have investigated the regulatory mechanism of PsoRPM3 in plant defense responses to M. incognita. Our results indicate that fewer giant cells were detected in the roots of the PsoRPM3 transgenic tobacco than wild tobacco lines after incubation with M. incognita. Transient transformations of full-length and TN structural domains of PsoRPM3 have induced significant hypersensitive responses (HR), suggesting that TIR domain might be the one which caused HR. Further, yeast two-hybrid results revealed that the full-length and LRR domain of PsoRPM3 could interact with the transcription factor Pso9TF. The addition of Pso9TF increased the ROS levels and induced HR. Thus, our data revealed that the LRR structural domain of PsoRPM3 may be associated with signal transduction. Moreover, we did not find any relative inductions of defense-related genes PsoEDS1, PsoPAD4 and PsoSAG101 in P. sogdiana, which has been incubated with M. incognita. In summary, our work has shown the key functional domain of PsoRPM3 in the regulation of defense responses to M. incognita in P. sogdiana.

SELECTION OF CITATIONS
SEARCH DETAIL
...