Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 406: 131015, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906196

ABSTRACT

Combining iron-carbon micro-electrolysis and autotrophic denitrification is promising for nitrate removal from wastewater. In this study, four continuous reactors were constructed using CO2 and weak magnetic field (WMF) to address challenges like iron passivation and pH stability. In the reactors with CO2 + WMF (10 and 35 mT), the increase in total nitrogen removal efficiency was significantly higher (96.2 ± 1.6 % and 94.1 ± 2.7 %, respectively) than that of the control (51.6 ± 2.7 %), and Fe3O4 converted to low-density FeO(OH) and FeCO3, preventing passivation film formation. The WMF application decreased the N2O emissions flux by 8.7 % and 20.5 %, respectively. With CO2 + WMF, the relative enzyme activity and abundance of denitrifying bacteria, especially unclassified_Rhodocyclaceae and Denitratisoma, increased. Thus, this study demonstrates that CO2 and WMF optimize the nitrate removal process, significantly enhancing removal efficiency, reducing greenhouse gas emissions, and improving process stability.

2.
Sci Total Environ ; 921: 171091, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38387566

ABSTRACT

Denitrifying biofilms, in which autotrophic denitrifiers (AD) and heterotrophic denitrifiers (HD) coexist, play a crucial role in removing nitrate from water or wastewater. However, it is difficult to elucidate the interactions between HD and AD through sequencing-based experimental methods. Here, we developed an individual-based model to describe the interspecies dynamics and priority effects between sulfur-based AD (Thiobacillus denitrificans) and HD (Thauera phenylcarboxya) under different C/N ratios. In test I (coexistence simulation), AD and HD were initially inoculated at a ratio of 1:1. The simulation results showed excellent denitrification performance and a coaggregation pattern of denitrifiers, indicating that cooperation was the predominant interaction at a C/N ratio of 0.25 to 1.5. In test II (invasion simulation), in which only one type of denitrifier was initially inoculated and the other was added at the invasion time, denitrifiers exhibited a stratification pattern in biofilms. When HD invaded AD, the final HD abundance decreased with increasing invasion time, indicating an enhanced priority effect. When AD invaded HD, insufficient organic carbon sources weakened the priority effect by limiting the growth of HD populations. This study reveals the interaction between autotrophic and heterotrophic denitrifiers, providing guidance for optimizing wastewater treatment process.


Subject(s)
Bioreactors , Denitrification , Autotrophic Processes , Heterotrophic Processes , Wastewater , Nitrates , Nitrogen
SELECTION OF CITATIONS
SEARCH DETAIL
...