Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Food Chem ; 443: 138556, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38290299

ABSTRACT

Potato is one of the most important crops worldwide, to feed a fast-growing population. In addition to providing energy, fiber, vitamins, and minerals, potato storage proteins are considered as one of the most valuable sources of non-animal proteins due to their high essential amino acid (EAA) index. However, low tuber protein content and limited knowledge about potato storage proteins restrict their widespread utilization in the food industry. Here, we report a proof-of-concept study, using deep learning-based protein design tools, to characterize the biological and chemical characteristics of patatins, the major potato storage proteins. This knowledge was then employed to design multiple cysteines on the patatin surface to build polymers linked by disulfide bonds, which significantly improved viscidity and nutrient of potato flour dough. Our study shows that deep learning-based protein design strategies are efficient to characterize and to create novel proteins for future food sources.


Subject(s)
Deep Learning , Solanum tuberosum , Solanum tuberosum/chemistry , Plant Proteins/metabolism , Plant Tubers/chemistry , Carbohydrates/analysis
2.
Front Plant Sci ; 14: 1111322, 2023.
Article in English | MEDLINE | ID: mdl-37025130

ABSTRACT

To explore specific components of resistance against the tomato-adapted powdery mildew pathogen Pseudoidium neolycopersici (On) in the model plant Arabidopsis, we performed a disease assay in 123 accessions. When testing the resistance in the F1 from crossings between resistant accessions with susceptible Col-0 or Sha, only the progeny of the cross between accession Bla-6 and Col-0 displayed a completely resistant phenotype. The resistance in Bla-6 is known to be specific for Pseudoidium neolycopersici. QTL analysis and fine-mapping through several rounds of recombinant screenings allowed us to locate a major resistance QTL in an interval on chromosome 1, containing two candidate genes and an intergenic insertion. Via CRISPR/Cas9 targeted mutagenesis, we could show that knocking out the ZED-1 RELATED KINASE 13 (ZRK13) gene compromised the On resistance in Bla-6. Several polymorphisms are observed in the ZRK13 allelic variant of Bla-6 when compared to the Col-0 protein.

3.
J Inflamm Res ; 16: 769-778, 2023.
Article in English | MEDLINE | ID: mdl-36855543

ABSTRACT

ABO blood group antigens exhibit alternative phenotypes and genetically derived structures that are located on the red cell surface. The role of ABO blood group in cancer biology has been intensely reported by several studies, and it is now widely recognized that ABO antigens are associated with the risk and prognosis of several types of tumors, namely gastric cancer and pancreatic cancer. However, there have been contentious limited issues with the association between the ABO blood group and lymphoma. In this narrative review, based on literature data, we discuss the role of ABO blood group in the risk and prognosis of lymphoma and summarize the current knowledge of the underlying pathogenic mechanisms of the association. The possible association of ABO blood group with racial disparities and pathological classification in lymphoma patients is also discussed.

4.
J Biol Eng ; 16(1): 33, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36457138

ABSTRACT

The frequency of outbreaks of newly emerging infectious diseases has increased in recent years. The coronavirus disease 2019 (COVID-19) outbreak in late 2019 has caused a global pandemic, seriously endangering human health and social stability. Rapid detection of infectious disease pathogens is a key prerequisite for the early screening of cases and the reduction in transmission risk. Fluorescence quantitative polymerase chain reaction (qPCR) is currently the most commonly used pathogen detection method, but this method has high requirements in terms of operating staff, instrumentation, venues, and so forth. As a result, its application in the settings such as poorly conditioned communities and grassroots has been limited, and the detection needs of the first-line field cannot be met. The development of point-of-care testing (POCT) technology is of great practical significance for preventing and controlling infectious diseases. Isothermal amplification technology has advantages such as mild reaction conditions and low instrument dependence. It has a promising prospect in the development of POCT, combined with the advantages of high integration and portability of microfluidic chip technology. This study summarized the principles of several representative isothermal amplification techniques, as well as their advantages and disadvantages. Particularly, it reviewed the research progress on microfluidic chip-based recombinase polymerase isothermal amplification technology and highlighted future prospects.

6.
Ecol Evol ; 11(23): 16806-16816, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34938474

ABSTRACT

Forests play a key role in regulating the global carbon cycle, a substantial portion of which is stored in aboveground biomass (AGB). It is well understood that biodiversity can increase the biomass through complementarity and mass-ratio effects, and the contribution of environmental factors and stand structure attributes to AGB was also observed. However, the relative influence of these factors in determining the AGB of Quercus forests remains poorly understood. Using a large dataset retrieved from 523 permanent forest inventory plots across Northeast China, we examined the effects of integrated multiple tree species diversity components (i.e., species richness, functional, and phylogenetic diversity), functional traits composition, environmental factors (climate and soil), stand age, and structure attributes (stand density, tree size diversity) on AGB based on structural equation models. We found that species richness and phylogenetic diversity both were not correlated with AGB. However, functional diversity positively affected AGB via an indirect effect in line with the complementarity effect. Moreover, the community-weighted mean of specific leaf area and height increased AGB directly and indirectly, respectively; demonstrating the mass-ratio effect. Furthermore, stand age, density, and tree size diversity were more important modulators of AGB than biodiversity. Our study highlights that biodiversity-AGB interaction is dependent on the regulation of stand structure that can be even more important for maintaining high biomass than biodiversity in temperate Quercus forests.

7.
Nat Commun ; 12(1): 4142, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34230469

ABSTRACT

Potato is the third most important staple food crop. To address challenges associated with global food security, a hybrid potato breeding system, aimed at converting potato from a tuber-propagated tetraploid crop into a seed-propagated diploid crop through crossing inbred lines, is under development. However, given that most diploid potatoes are self-incompatible, this represents a major obstacle which needs to be addressed in order to develop inbred lines. Here, we report on a self-compatible diploid potato, RH89-039-16 (RH), which can efficiently induce a mating transition from self-incompatibility to self-compatibility, when crossed to self-incompatible lines. We identify the S-locusinhibitor (Sli) gene in RH, capable of interacting with multiple allelic variants of the pistil-specific S-ribonucleases (S-RNases). Further, Sli gene functions like a general S-RNase inhibitor, to impart SC to RH and other self-incompatible potatoes. Discovery of Sli now offers a path forward for the diploid hybrid breeding program.


Subject(s)
Diploidy , F-Box Proteins/genetics , Genes, Plant , Plant Proteins/genetics , Self-Incompatibility in Flowering Plants/genetics , Solanum tuberosum/genetics , Flowers/genetics , Phylogeny , Plant Breeding , Plants, Genetically Modified , Ribonucleases/genetics , Seeds
8.
Genes (Basel) ; 12(5)2021 05 11.
Article in English | MEDLINE | ID: mdl-34064921

ABSTRACT

In tomato (Solanum lycopersicum), there are at least three SlMLO (Mildew resistance Locus O) genes acting as susceptibility genes for the powdery mildew disease caused by Oidium neolycopersici, namely SlMLO1, SlMLO5 and SlMLO8. Of the three homologs, the SlMLO1 gene plays a major role since a natural mutant allele called ol-2 can almost completely prevent fungal penetration by formation of papillae. The ol-2 allele contains a 19-bp deletion in the coding sequence of the SlMLO1 gene, resulting in a premature stop codon within the second cytoplasmic loop of the predicted protein. In this study, we have developed a new genetic resource (M200) in the tomato cv. Micro-Tom genetic background by means of ethyl methane sulfonate (EMS) mutagenesis. The mutant M200 containing a novel allele (the m200 allele) of the tomato SlMLO1 gene showed profound resistance against powdery mildew with no fungal sporulation. Compared to the coding sequence of the SlMLO1 gene, the m200 allele carries a point mutation at T65A. The SNP results in a premature stop codon L22* located in the first transmembrane domain of the complete SlMLO1 protein. The length of the predicted protein is 21 amino acids, while the SlMLO1 full-length protein is 513 amino acids. A high-resolution melting (HRM) marker was developed to distinguish the mutated m200 allele from the SlMLO1 allele in backcross populations. The mutant allele conferred recessive resistance that was associated with papillae formation at fungal penetration sites of plant epidermal cells. A comprehensive list of known mlo mutations found in natural and artificial mutants is presented, which serves as a particularly valuable resource for powdery mildew resistance breeding.


Subject(s)
Disease Resistance , Membrane Proteins/genetics , Plant Proteins/genetics , Solanum lycopersicum/genetics , Ascomycota/pathogenicity , Ethyl Methanesulfonate/toxicity , Solanum lycopersicum/microbiology , Mutagenesis , Mutagens/toxicity , Point Mutation , Polymorphism, Single Nucleotide
9.
Sci Total Environ ; 780: 146674, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34030338

ABSTRACT

Although the relationship between biodiversity and ecosystem functioning has been extensively studied, it remains unclear if the relationships of biodiversity with productivity and its spatial stability vary along productivity gradients in natural ecosystems. Based on a large dataset from 2324 permanent forest inventory plots across northeastern China, we examined the intensity of species richness (SR) and tree size diversity (Hd) effects on aboveground wood productivity (AWP) and its spatial stability among different productivity levels. Structural equation modeling was applied, integrating abiotic (climate and soil) and biotic (stand density) factors. Our results demonstrated that both SR and Hd positively affected AWP and its spatial stability, and the intensity of these positive effects decreased with increasing productivity. At low productivity levels, SR and Hd increased spatial stability by reducing spatial variability and increasing mean AWP. At high productivity levels, stability increased only through mean AWP increase. Moreover, temperature and stand density affected the AWP directly and indirectly via biodiversity, and the strength and direction of these effects varied among different productivity levels. We concluded that biodiversity could simultaneously enhance productivity and its spatial stability in temperate forests, and that the effect intensity was uniform along productivity gradients, which provided a new perspective on relationships within biodiversity-ecosystem functioning.


Subject(s)
Ecosystem , Forests , Biodiversity , Biomass , China , Trees
10.
Plant Cell ; 33(2): 306-321, 2021 04 17.
Article in English | MEDLINE | ID: mdl-33793793

ABSTRACT

Unisexual flowers provide a useful system for studying plant sex determination. In cucumber (Cucumis sativus L.), three major Mendelian loci control unisexual flower development, Female (F), androecious [a; 1-aminocyclopropane-1-carboxylate {ACC} synthase 11, acs11], and Monoecious (M; ACS2), referred to here as the Female, Androecious, Monoecious (FAM) model, in combination with two genes, gynoecious (g, the WIP family C2H2 zinc finger transcription factor gene WIP1) and the ethylene biosynthetic gene ACC oxidase 2 (ACO2). The F locus, conferring gynoecy and the potential for increasing fruit yield, is defined by a 30.2-kb tandem duplication containing three genes. However, the gene that determines the Female phenotype, and its mechanism, remains unknown. Here, we created a set of mutants and revealed that ACS1G is responsible for gynoecy conferred by the F locus. The duplication resulted in ACS1G acquiring a new promoter and expression pattern; in plants carrying the F locus duplication, ACS1G is expressed early in floral bud development, where it functions with ACO2 to generate an ethylene burst. The resulting ethylene represses WIP1 and activates ACS2 to initiate gynoecy. This early ACS1G expression bypasses the need for ACS11 to produce ethylene, thereby establishing a dominant pathway for female floral development. Based on these findings, we propose a model for how these ethylene biosynthesis genes cooperate to control unisexual flower development in cucumber.


Subject(s)
Cucumis sativus/enzymology , Cucumis sativus/genetics , Flowers/enzymology , Flowers/genetics , Lyases/genetics , Amino Acid Sequence , Gene Expression Regulation, Plant , Genetic Loci , Genome, Plant , Genotype , Glucuronidase/metabolism , Lyases/chemistry , Phenotype , Plants, Genetically Modified , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
Food Chem (Oxf) ; 3: 100039, 2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35415656

ABSTRACT

The concentration of chlorogenic acids (CGAs), is tightly associated with the appearance, taste, and nutrient content of potato tubers. Manipulation of tuber CGA concentrations allows for the breeding of quality traits in potatoes. Currently, a hybrid potato breeding system that aims to convert tetraploid potato into a diploid seed crop represents a new development in potato breeding. Unfortunately, however, a systematic study of CGA formation is very limited in diploid potatoes. Here, using a diverse panel of diploid potatoes, including 40 ancestors and 374 landraces, we analyzed the influence of location, environment, genetic basis, as well as expression of enzymes, in affecting the CGA concentrations in diploid lines. We revealed a selection of the decreased CGA level of tuber flesh in the domestication of diploid potatoes. Moreover, we identified 18 SNPs associated with tuber CGA levels using re-sequenced genome data. This study provides a basis for the breeding of high-quality potato by taking into consideration customer preferences.

13.
J Integr Plant Biol ; 59(10): 736-741, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28598543

ABSTRACT

Plant species exhibit substantial variation in leaf morphology. We isolated a recessive mutant gene termed small and cordate leaf 1 (scl1) that causes alteration in both leaf size and shape of cucumber. Compared to wild type leaves, the scl1 mutant had fewer numbers of epidermal pavement cells. A single nucleotide polymorphism was associated with this leaf phenotype, which occurred in a putative nucleoside bisphosphate phosphatase. RNA-seq analysis of the wild type and scl1 mutant leaves suggested that SCL1 regulation may not involve known hormonal pathways. Our work identified a candidate gene for SCL1 that may play a role in leaf development.


Subject(s)
Cucumis sativus/genetics , Genes, Plant , Mutation/genetics , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Plant Proteins/genetics , Genetic Association Studies , Plant Proteins/metabolism , Sequence Analysis, RNA
14.
Mol Plant ; 9(9): 1315-1327, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27403533

ABSTRACT

Sex determination in plants gives rise to unisexual flowers that facilitate outcrossing and enhance genetic diversity. In cucumber and melon, ethylene promotes carpel development and arrests stamen development. Five sex-determination genes have been identified, including four encoding 1-aminocyclopropane-1-carboxylate (ACC) synthase that catalyzes the rate-limiting step in ethylene biosynthesis, and a transcription factor gene CmWIP1 that corresponds to the Mendelian locus gynoecious in melon and is a negative regulator of femaleness. ACC oxidase (ACO) converts ACC into ethylene; however, it remains elusive which ACO gene in the cucumber genome is critical for sex determination and how CmWIP1 represses development of female flowers. In this study, we discovered that mutation in an ACO gene, CsACO2, confers androecy in cucumber that bears only male flowers. The mutation disrupts the enzymatic activity of CsACO2, resulting in 50% less ethylene emission from shoot tips. CsACO2 was expressed in the carpel primordia and its expression overlapped with that of CsACS11 in female flowers at key stages for sex determination, presumably providing sufficient ethylene required for proper CsACS2 expression. CmACO3, the ortholog of CsACO2, showed a similar expression pattern in the carpel region, suggesting a conserved function of CsACO2/CmACO3. We demonstrated that CsWIP1, the ortholog of CmWIP1, could directly bind the promoter of CsACO2 and repress its expression. Taken together, we propose a presumably conserved regulatory module consisting of WIP1 transcription factor and ACO controls unisexual flower development in cucumber and melon.


Subject(s)
Amino Acid Oxidoreductases/metabolism , Cucumis sativus/enzymology , Cucumis sativus/metabolism , Flowers/enzymology , Flowers/metabolism , Plant Proteins/metabolism , Amino Acid Oxidoreductases/genetics , Cucumis sativus/genetics , Ethylenes/metabolism , Flowers/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Plant Proteins/genetics , Promoter Regions, Genetic/genetics
16.
J Integr Plant Biol ; 58(9): 766-71, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26936301

ABSTRACT

We isolated a mutant showing perturbations in the development of male and female floral organs and fruits. Analysis of the single nucleotide polymorphisms from bulked F2 pools identified the causative variant occurring in Csa4G126690. Csa4G126690 shows high homology to Arabidopsis SEPALLATA2 (SEP2) thus being designated CsSEP2. The causative variant was located on the splicing site of CsSEP2, resulting in the skipping of exon 6 and abolishment of the transcriptional activity. Our data suggest that CsSEP2 is involved in the floral organ and fruits development by conferring transcriptional activity.


Subject(s)
Cucumis sativus/growth & development , Cucumis sativus/genetics , Exons/genetics , Flowers/growth & development , Fruit/growth & development , Genes, Plant , Plant Proteins/genetics , Base Sequence , Flowers/genetics , Fruit/genetics , Mutation/genetics , Phenotype , Plant Proteins/metabolism , Polymorphism, Single Nucleotide/genetics
17.
Theor Appl Genet ; 129(1): 97-104, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26433829

ABSTRACT

KEY MESSAGE: A major QTL conditioning high degree of femaleness in cucumber was identified by marker analysis and next generation sequencing. Cucumber (Cucumis sativus L.) is a model species for sex determination studies, and its yield is associated with the degree of femaleness. Subgynoecy represents a sex form with a high degree of femaleness for which the genetic basis remains elusive. In this study, genetic analysis in the F2 and BC1 populations developed from a cross between subgynoecious S-2-98 and monoecious M95 suggested a quantitative nature of subgynoecy. Application of simple sequence repeat markers between subgynoecious and monoecious bulks constructed from BC1 plants identified three QTLs: sg3.1, sg6.1, and sg6.2. The major QTL sg3.1 contributed to 54.6% of the phenotypic variation, and its presence was confirmed by genome-wide comparison of SNP profiles between parental lines and a subgynoecious bulk constructed from BC6 plants. Using PCR-based markers developed from the SNP profile, sg3.1 was further delimited to a genomic region of 799 kb. The genetic basis of subgynoecy revealed here shall shed light on the development of elite cultivars with high yield potential.


Subject(s)
Cucumis sativus/genetics , Cucumis sativus/physiology , Microsatellite Repeats , Quantitative Trait Loci , Chromosome Mapping , Flowers/physiology , Genetic Markers , Genome, Plant , Inheritance Patterns , Phenotype , Polymerase Chain Reaction , Reproduction/genetics
18.
Mol Plant Pathol ; 16(1): 71-82, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24925473

ABSTRACT

To screen for potentially novel types of resistance to tomato powdery mildew Oidium neolycopersici, a disease assay was performed on 123 Arabidopsis thaliana accessions. Forty accessions were fully resistant, and one, C24, was analysed in detail. By quantitative trait locus (QTL) analysis of an F2 population derived from C24 × Sha (susceptible accession), two QTLs associated with resistance were identified in C24. Fine mapping of QTL-1 on chromosome 1 delimited the region to an interval of 58 kb encompassing 15 candidate genes. One of these was Enhanced Disease Resistance 1 (EDR1). Evaluation of the previously obtained edr1 mutant of Arabidopsis accession Col-0, which was identified because of its resistance to powdery mildew Golovinomyces cichoracearum, showed that it also displayed resistance to O. neolycopersici. Sequencing of EDR1 in our C24 germplasm (referred to as C24-W) revealed two missing nucleotides in the second exon of EDR1 resulting in a premature stop codon. Remarkably, C24 obtained from other laboratories does not contain the EDR1 mutation. To verify the identity of C24-W, a DNA region containing a single nucleotide polymorphism (SNP) unique to C24 was sequenced showing that C24-W contains the C24-specific nucleotide. C24-W showed enhanced resistance to O. neolycopersici compared with C24 not containing the edr1 mutation. Furthermore, C24-W displayed a dwarf phenotype, which was not associated with the mutation in EDR1 and was not caused by the differential accumulation of pathogenesis-related genes. In conclusion, we identified a natural edr1 mutant in the background of C24.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/immunology , Arabidopsis/microbiology , Ascomycota/physiology , Disease Resistance/immunology , Mutation/genetics , Plant Diseases/microbiology , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Base Sequence , Cell Death , Crosses, Genetic , Gene Expression Regulation, Plant , Solanum lycopersicum/microbiology , Molecular Sequence Data , Physical Chromosome Mapping , Plant Diseases/genetics , Plant Diseases/immunology , Quantitative Trait Loci/genetics , Suppression, Genetic
19.
Plant Mol Biol ; 86(6): 641-53, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25293871

ABSTRACT

Powdery mildew species Oidium neolycopersici (On) can cause serious yield losses in tomato production worldwide. Besides on tomato, On is able to grow and reproduce on Arabidopsis. In this study we screened a collection of activation-tagged Arabidopsis mutants and identified one mutant, 3221, which displayed resistance to On, and in addition showed a reduced stature and serrated leaves. Additional disease tests demonstrated that the 3221 mutant exhibited resistance to downy mildew (Hyaloperonospora arabidopsidis) and green peach aphid (Myzus persicae), but retained susceptibility to bacterial pathogen Pseudomonas syringae pv tomato DC3000. The resistance trait and morphological alteration were mutually linked in 3221. Identification of the activation tag insertion site and microarray analysis revealed that ATHB13, a homeodomain-leucine zipper (HD-Zip) transcription factor, was constitutively overexpressed in 3221. Silencing of ATHB13 in 3221 resulted in the loss of both the morphological alteration and resistance, whereas overexpression of the cloned ATHB13 in Col-0 and Col-eds1-2 backgrounds resulted in morphological alteration and resistance. Microarray analysis further revealed that overexpression of ATHB13 influenced the expression of a large number of genes. Previously, it was reported that ATHB13-overexpressing lines conferred tolerance to abiotic stress. Together with our results, it appears that ATHB13 is involved in the crosstalk between abiotic and biotic stress resistance pathways.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Disease Resistance , Gene Expression Regulation, Plant , Homeodomain Proteins/genetics , Plant Diseases/immunology , Stress, Physiological , Animals , Aphids/physiology , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis Proteins/metabolism , Ascomycota/physiology , Gene Expression Profiling , Homeodomain Proteins/metabolism , Leucine Zippers , Mutagenesis, Insertional , Oligonucleotide Array Sequence Analysis , Oomycetes/physiology , Phenotype , Plant Epidermis/cytology , Plant Epidermis/genetics , Plant Epidermis/immunology , Plant Epidermis/physiology , Plant Leaves/cytology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/physiology , Plants, Genetically Modified , Pseudomonas syringae/physiology , Signal Transduction
20.
BMC Plant Biol ; 14: 32, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24438198

ABSTRACT

BACKGROUND: In a cDNA-AFLP analysis comparing transcript levels between powdery mildew (Oidium neolycopersici)-susceptible tomato cultivar Moneymaker (MM) and near isogenic lines (NILs) carrying resistance gene Ol-1 or Ol-4, a transcript-derived fragment (TDF) M11E69-195 was found to be present in NIL-Ol-1 but absent in MM and NIL-Ol-4. This TDF shows homology to acetolactate synthase (ALS). ALS is a key enzyme in the biosynthesis of branched-chain amino acids valine, leucine and isoleucine, and it is also a target of commercial herbicides. RESULTS: Three ALS homologs ALS1, ALS2, ALS3 were identified in the tomato genome sequence. ALS1 and ALS2 show high similarity, whereas ALS3 is more divergent. Transient silencing of both ALS1 and ALS2 in NIL-Ol-1 by virus-induced gene silencing (VIGS) resulted in chlorotic leaf areas that showed increased susceptibility to O. neolycopersici (On). VIGS results were confirmed by stable transformation of NIL-Ol-1 using an RNAi construct targeting both ALS1 and ALS2. In contrast, silencing of the three ALS genes individually by RNAi constructs did not compromise the resistance of NIL-Ol-1. Application of the herbicide chlorsulfuron to NIL-Ol-1 mimicked the VIGS phenotype and caused loss of its resistance to On. Susceptible MM and On-resistant line NIL-Ol-4 carrying a nucleotide binding site and leucine rich repeat (NB-LRR) resistance gene were also treated with chlorsulfuron. Neither the susceptibility of MM nor the resistance of NIL-Ol-4 was affected. CONCLUSIONS: ALS is neither involved in basal defense, nor in resistance conferred by NB-LRR type resistance genes. Instead, it is specifically involved in Ol-1-mediated resistance to tomato powdery mildew, suggesting that ALS-induced change in amino acid homeostasis is important for resistance conferred by Ol-1.


Subject(s)
Acetolactate Synthase/metabolism , Ascomycota/pathogenicity , Plant Diseases/microbiology , Solanum lycopersicum/enzymology , Solanum lycopersicum/microbiology , Acetolactate Synthase/genetics , Disease Resistance , Plant Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...