Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
BMC Biol ; 21(1): 67, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37013528

ABSTRACT

BACKGROUND: Channel catfish and blue catfish are the most important aquacultured species in the USA. The species do not readily intermate naturally but F1 hybrids can be produced through artificial spawning. F1 hybrids produced by mating channel catfish female with blue catfish male exhibit heterosis and provide an ideal system to study reproductive isolation and hybrid vigor. The purpose of the study was to generate high-quality chromosome level reference genome sequences and to determine their genomic similarities and differences. RESULTS: We present high-quality reference genome sequences for both channel catfish and blue catfish, containing only 67 and 139 total gaps, respectively. We also report three pericentric chromosome inversions between the two genomes, as evidenced by long reads across the inversion junctions from distinct individuals, genetic linkage mapping, and PCR amplicons across the inversion junctions. Recombination rates within the inversional segments, detected as double crossovers, are extremely low among backcross progenies (progenies of channel catfish female × F1 hybrid male), suggesting that the pericentric inversions interrupt postzygotic recombination or survival of recombinants. Identification of channel catfish- and blue catfish-specific genes, along with expansions of immunoglobulin genes and centromeric Xba elements, provides insights into genomic hallmarks of these species. CONCLUSIONS: We generated high-quality reference genome sequences for both blue catfish and channel catfish and identified major chromosomal inversions on chromosomes 6, 11, and 24. These perimetric inversions were validated by additional sequencing analysis, genetic linkage mapping, and PCR analysis across the inversion junctions. The reference genome sequences, as well as the contrasted chromosomal architecture should provide guidance for the interspecific breeding programs.


Subject(s)
Ictaluridae , Humans , Animals , Male , Female , Ictaluridae/genetics , Chromosome Inversion , Genetic Linkage , Genome , Chromosome Mapping
2.
Sci Adv ; 8(51): eadc8786, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36542716

ABSTRACT

The X and Y chromosomes of channel catfish have the same gene contents. Here, we report allelic hypermethylation of the X chromosome within the sex determination region (SDR). Accordingly, the X-borne hydin-1 gene was silenced, whereas the Y-borne hydin-1 gene was expressed, making monoallelic expression of hydin-1 responsible for sex determination, much like genomic imprinting. Treatment with a methylation inhibitor, 5-aza-dC, erased the epigenetic marks within the SDR and caused sex reversal of genetic females into phenotypic males. After the treatment, hydin-1 and six other genes related to cell cycle control and proliferative growth were up-regulated, while three genes related to female sex differentiation were down-regulated in genetic females, providing additional support for epigenetic sex determination in catfish. This mechanism of sex determination provides insights into the plasticity of genetic sex determination in lower vertebrates and its connection with temperature sex determination where DNA methylation is broadly involved.


Subject(s)
Genomic Imprinting , Ictaluridae , Male , Animals , Female , Ictaluridae/genetics , DNA Methylation , X Chromosome , Vertebrates
3.
Front Genet ; 13: 994471, 2022.
Article in English | MEDLINE | ID: mdl-36406125

ABSTRACT

Major progress has been made with genomic and genetic studies in aquaculture in the last decade. However, research on epigenetic regulation of aquaculture traits is still at an early stage. It is apparent that most, if not all, aquaculture traits are regulated at both genetic and epigenetic levels. This paper reviews recent progress in understanding of genetic and epigenetic regulation of important aquaculture traits such as growth, reproduction, disease resistance, and stress responses. Although it is challenging to make generalized statements, DNA methylation is mostly correlated with down-regulation of gene expression, especially when at promoters and enhancers. As such, methylation of growth factors and their receptors is negatively correlated with growth; hypomethylation of genes important for stress tolerance is correlated with increased stress tolerance; hypomethylation of genes important for male or female sex differentiation leads to sex differentiation into males or females, respectively. It is apparent that environmental regulation of aquaculture traits is mediated at the level of epigenetic regulation, and such environment-induced epigenetic changes appeared to be intergenerationally inherited, but evidences for transgenerational inheritance are still limited.

4.
Epigenetics ; 17(12): 1820-1837, 2022 12.
Article in English | MEDLINE | ID: mdl-35703353

ABSTRACT

Exogenous oestrogen 17ß-oestradiol (E2) has been shown to effectively induce feminization in teleosts. However, the molecular mechanisms underlying the process remain unclear. Here, we determined global DNA methylation and gene expression profiles of channel catfish (Ictalurus punctatus) during early sex differentiation after E2 treatment. Overall, the levels of global DNA methylation after E2 treatment were not significantly different from those of controls. However, a specific set of genes were differentially methylated, which included many sex differentiation-related pathways, such as MARK signalling, adrenergic signalling, Wnt signalling, GnRH signalling, ErbB signalling, and ECM-receptor interactions. Many genes involved in these pathways were also differentially expressed after E2 treatment. Specifically, E2 treatments resulted in upregulation of female-related genes and downregulation of male-related genes in genetic males during sex reversal. However, E2-induced sex reversal did not cause sex-specific changes in methylation profiles or gene expression within the sex determination region (SDR) on chromosome 4, suggesting that E2-induced sex reversal was a downstream process independent of the sex determination process that was regulated by sex-specific methylation within the SDR.


Subject(s)
Estradiol , Feminization , Ictaluridae , Animals , Female , Male , Adrenergic Agents , DNA Methylation , Estradiol/pharmacology , Estrogens , Gonadotropin-Releasing Hormone
5.
Int J Mol Sci ; 23(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35628283

ABSTRACT

Channel catfish has an XY sex determination system. However, the X and Y chromosomes harbor an identical gene content of 950 genes each. In this study, we conducted comparative analyses of methylome and transcriptome of genetic males and genetic females before gonadal differentiation to provide insights into the mechanisms of sex determination. Differentially methylated CpG sites (DMCs) were predominantly identified on the sex chromosome, most notably within the sex determination region (SDR), although the overall methylation profiles across the entire genome were similar between genetic males and females. The drastic differences in methylation were located within the SDR at nucleotide position 14.0-20.3 Mb of the sex chromosome, making this region an epigenetically marked locus within the sex determination region. Most of the differentially methylated CpG sites were hypermethylated in females and hypomethylated in males, suggesting potential involvement of methylation modification in sex determination in channel catfish. Along with the differential methylation in the SDR, a number of differentially expressed genes within the SDR were also identified between genetic males and females, making them potential candidate genes for sex determination and differentiation in channel catfish.


Subject(s)
Ictaluridae , Animals , Female , Genome , Male , Sex Chromosomes , Sex Determination Analysis , Y Chromosome
6.
Mar Biotechnol (NY) ; 24(1): 174-189, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35166964

ABSTRACT

Identification of genetic markers associated with resistance against enteric septicemia of catfish (ESC) is of great interest for genetic enhancement programs of catfish. In the present study, bulk segregant RNA-Seq analysis was applied to determine differentially expressed genes and alleles after ESC infection. Here we report three genomic regions on LG1, LG12, and LG26, containing significant single-nucleotide polymorphisms (SNPs). These genomic regions aligned well with quantitative trait loci (QTL) previously identified. Within the QTL regions, eleven genes were found to be differentially regulated between phenotypic bulks. Importantly, the QTL on linkage group 1 (LG1) were found to be expressed in the liver, whereas the QTL on LG12 and LG26 were expressed in the intestine, suggesting multiple mechanisms of ESC resistance. It is apparent that apolipoproteins may be important for ESC resistance as the QTL on LG1 included the 14-kDa apolipoprotein genes that are both allelically expressed and differentially expressed between the resistant and susceptible bulks. Traf2 and NCK-interacting protein kinase (TNIK) were found in the QTL on LG12, and it was downregulated in resistant fish, suggesting the importance of NCK downregulation in ESC resistance, as previously reported. In addition, we observed divergent gene expression patterns between the liver and intestine after infection. Immune/inflammatory-related processes were overrepresented from liver DEGs, while those DEGs identified from intestine were enriched for proteolysis and wounding processes. Taken together, the BSR-Seq analysis presented here advanced the knowledge of ESC resistance, providing information of not only positions of QTL but also genes and their differential expression between resistant and susceptible fish, making it one step closer to the identification of the causal genes for ESC resistance.


Subject(s)
Enterobacteriaceae Infections , Fish Diseases , Ictaluridae , Animals , Edwardsiella ictaluri , Enterobacteriaceae Infections/genetics , Enterobacteriaceae Infections/veterinary , Fish Diseases/genetics , Ictaluridae/genetics , RNA-Seq
7.
Fish Shellfish Immunol ; 91: 188-193, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31077849

ABSTRACT

Columnaris disease has long been recognized as a serious problem worldwide which affects both wild and cultured freshwater fish including the commercially important channel catfish (Ictalurus punctatus). The fundamental molecular mechanisms of the host immune response to the causative agent Flavobacterium columnare remain unclear, though gene expression analysis after the bacterial infection has been conducted. Alternative splicing, a post-transcriptional regulation process to modulate gene expression and increase the proteomic diversity, has not yet been studied in channel catfish following infection with F. columnare. In this study, genomic information and RNA-Seq datasets of channel catfish were used to characterize the changes of alternative splicing after the infection. Alternative splicing was shown to be induced by F. columnare infection, with 8.0% increase in alternative splicing event at early infection stage. Intriguingly, genes involved in RNA binding and RNA splicing themselves were significantly enriched in differentially alternatively spliced (DAS) gene sets after infection. This finding was consistent with our previous study in channel catfish following infection with Edwardsiella ictaluri. It was suggested to be a universal mechanism that genes involved in RNA binding and splicing were regulated to undergo differential alternative splicing after stresses in channel catfish. Moreover, many immune genes were observed to be differentially alternatively spliced after infection. Further studies need to be performed to get a deeper view of molecular regulation on alternative splicing after stresses, setting a foundation for developing catfish broodstocks with enhanced disease resistance.


Subject(s)
Alternative Splicing/immunology , Fish Diseases/immunology , Flavobacteriaceae Infections/veterinary , Ictaluridae , Transcription, Genetic/immunology , Animals , Fish Diseases/microbiology , Flavobacteriaceae Infections/immunology , Flavobacteriaceae Infections/microbiology , Flavobacterium/physiology , Random Allocation
8.
Article in English | MEDLINE | ID: mdl-30952021

ABSTRACT

Polyadenylation plays important roles in gene expression regulation in eukaryotes, which typically involves cleavage and poly(A) tail addition at the polyadenylation site (PAS) of the pre-mature mRNA. Many eukaryotic genes contain more than one PASs, termed as alternative polyadenylation (APA). As a crucial post-transcriptional regulation, polyadenylation affects various aspects of RNA metabolism such as mRNA stability, translocation, and translation. However, polyadenylation has been rarely studied in teleosts. Here we conducted polyadenylation analysis in channel catfish, a commercially important aquaculture species around the world. Using RNA-Seq data, we identified 20,320 PASs which were classified into 14,500 clusters by merging adjacent PASs. Most of the PASs were found in 3' UTRs, followed by intron regions based on the annotation of channel catfish reference genome. No apparent difference in PAS distribution was observed between the sense and antisense strand of the channel catfish genome. The sequence analysis of nucleotide composition and motif around PASs yielded a highly similar profile among various organisms, suggesting the conservation and importance of polyadenylation in evolution. Using APA genes with more than two PASs, gene ontology enrichment revealed genes particularly involved in RNA binding. Reactome pathway analysis showed the enrichment of the innate immune system, especially neutrophil degranulation.


Subject(s)
Ictaluridae/genetics , RNA, Messenger/genetics , Animals , Base Sequence , Polyadenylation , RNA-Seq , Transcriptome
9.
Mar Biotechnol (NY) ; 21(3): 335-347, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30895402

ABSTRACT

Motile Aeromonas septicemia (MAS) disease caused by a bacterial pathogen, Aeromonas hydrophila, is an emerging but severe disease of catfish. Genetic enhancement of disease resistance is considered to be effective to control the disease. To provide an insight into the genomic basis of MAS disease resistance, in this study, we conducted a genome-wide association study (GWAS) to identify quantitative trait loci (QTL). A total of 1820 interspecific backcross catfish of 7 families were challenged with A. hydrophila, and 382 phenotypic extremes were selected for genotyping with the catfish 690 K SNP arrays. Three QTL on linkage group (LG) 2, 26 and 29 were identified to be significantly associated with MAS resistance. Within these regions, a total of 24 genes had known functions in immunity, 10 of which were involved in NF-κB signaling pathway, suggesting the importance of NF-κB signaling pathway in MAS resistance. In addition, three suggestively significant QTL were identified on LG 11, 17, and 20. The limited numbers of QTL involved in MAS resistance suggests that marker-assisted selection may be a viable approach for catfish breeding.


Subject(s)
Disease Resistance/immunology , Fish Diseases/genetics , Fish Diseases/immunology , Gram-Negative Bacterial Infections/veterinary , NF-kappa B/physiology , Sepsis/veterinary , Signal Transduction/immunology , Aeromonas hydrophila , Animals , Breeding , Catfishes , Disease Resistance/genetics , Genetic Linkage , Genome-Wide Association Study , Gram-Negative Bacterial Infections/genetics , Gram-Negative Bacterial Infections/immunology , Quantitative Trait Loci , Sepsis/genetics
10.
Dev Comp Immunol ; 97: 38-44, 2019 08.
Article in English | MEDLINE | ID: mdl-30905685

ABSTRACT

FOXO proteins are a subgroup of the forkhead family of transcription factors that play crucial roles in lifespan regulation. In addition, FOXO proteins are also involved in immune responses. After a systematic study of FOXO genes in channel catfish, Ictalurus punctatus, seven FOXO genes were identified and characterized, including FOXO1a, FOXO1b, FOXO3a, FOXO3b, FOXO4, FOXO6a and FOXO6b. Through phylogenetic and syntenic analyses, it was found that FOXO1, FOXO3 and FOXO6 were duplicated in the catfish genome, as in the zebrafish genome. Analysis of the relative rates of nonsynonymous (dN) and synonymous (dS) substitutions revealed that the FOXO genes were globally strongly constrained by negative selection. Differential expression patterns were observed in the majority of FOXO genes after Edwardsiella ictaluri and Flavobacterium columnare infections. After E. ictaluri infection, four FOXO genes with orthologs in mammal species were significantly upregulated, where FOXO6b was the most dramatically upregulated. However, after F. columnare infection, the expression levels of almost all FOXO genes were not significantly affected. These results suggested that either a pathogenesis-specific pattern or tissue-specific pattern existed in catfish after these two bacterial infections. Taken together, these findings indicated that FOXO genes may play important roles in immune responses to bacterial infections in catfish.


Subject(s)
Bacterial Infections/genetics , Fish Diseases/genetics , Fish Proteins/genetics , Forkhead Transcription Factors/genetics , Ictaluridae/genetics , Multigene Family , Animals , Bacterial Infections/immunology , Bacterial Infections/microbiology , Edwardsiella ictaluri/immunology , Edwardsiella ictaluri/physiology , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Proteins/classification , Fish Proteins/immunology , Flavobacterium/immunology , Flavobacterium/physiology , Forkhead Transcription Factors/classification , Forkhead Transcription Factors/immunology , Gene Expression Profiling/methods , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Ictaluridae/immunology , Ictaluridae/microbiology , Phylogeny
11.
BMC Biol ; 17(1): 6, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30683095

ABSTRACT

BACKGROUND: Sex determination mechanisms in teleost fish broadly differ from mammals and birds, with sex chromosomes that are far less differentiated and recombination often occurring along the length of the X and Y chromosomes, posing major challenges for the identification of specific sex determination genes. Here, we take an innovative approach of comparative genome analysis of the genomic sequences of the X chromosome and newly sequenced Y chromosome in the channel catfish. RESULTS: Using a YY channel catfish as the sequencing template, we generated, assembled, and annotated the Y genome sequence of channel catfish. The genome sequence assembly had a contig N50 size of 2.7 Mb and a scaffold N50 size of 26.7 Mb. Genetic linkage and GWAS analyses placed the sex determination locus within a genetic distance less than 0.5 cM and physical distance of 8.9 Mb. However, comparison of the channel catfish X and Y chromosome sequences showed no sex-specific genes. Instead, comparative RNA-Seq analysis between females and males revealed exclusive sex-specific expression of an isoform of the breast cancer anti-resistance 1 (BCAR1) gene in the male during early sex differentiation. Experimental knockout of BCAR1 gene converted genetic males (XY) to phenotypic females, suggesting BCAR1 as a putative sex determination gene. CONCLUSIONS: We present the first Y chromosome sequence among teleost fish, and one of the few whole Y chromosome sequences among vertebrate species. Comparative analyses suggest that sex-specific isoform expression through alternative splicing may underlie sex determination processes in the channel catfish, and we identify BCAR1 as a potential sex determination gene.


Subject(s)
Ictaluridae/genetics , Sex Determination Processes/genetics , Y Chromosome , Animals , Chromosome Mapping , Female , Genetic Linkage , Genome , Male , Sequence Analysis, DNA
12.
Article in English | MEDLINE | ID: mdl-30481682

ABSTRACT

Heat tolerance is increasingly becoming an important trait for aquaculture species with a changing climate. Transcriptional studies on responses to heat stress have been conducted in catfish, one of the most important economic aquaculture species around the world. The molecular mechanisms underlying heat tolerance is still poorly understood, especially at the post-transcriptional level including regulation of alternative splicing. In this study, existing RNA-Seq datasets were utilized to characterize the change of alternative splicing in catfish following heat treatment. Heat-tolerant and -intolerant catfish were differentiated by the time to lost equilibrium after heat stress. With heat stress, alternative splicing was generally increased. In heat-intolerant fish, the thermal stress induced 29.2% increases in alternative splicing events and 25.8% increases in alternatively spliced genes. A total of 282, 189, and 44 differential alternative splicing (DAS) events were identified in control-intolerant, control-tolerant, and intolerant-tolerant comparisons, corresponding to 252, 171, and 42 genes, respectively. Gene ontology analyses showed that genes involved in the molecular function of RNA binding were significantly enriched in DAS gene sets after heat stress in both heat-intolerant and -tolerant catfish compared with the control group. Similar results were also observed in the DAS genes between heat-intolerant and -tolerant catfish, and the biological process of RNA splicing was also enriched in this comparison, indicating the involvement of RNA splicing-related genes underlying heat tolerance. This is the first comprehensive study of alternative splicing in response to heat stress in fish species, providing insights into the molecular mechanisms of responses to the abiotic stress.


Subject(s)
Alternative Splicing , Catfishes/genetics , Hot Temperature , Stress, Physiological , Transcriptome , Animals , Fish Proteins/genetics
13.
BMC Genomics ; 19(1): 952, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30572844

ABSTRACT

BACKGROUND: Walking catfish (Clarias batrachus) is a freshwater fish capable of air-breathing and locomotion on land. It usually inhabits various low-oxygen habitats, burrows inside the mudflat, and sometimes "walks" to search for suitable environments during summer. It has evolved accessory air-breathing organs for respiring air and corresponding mechanisms to survive in such challenging environments. Thereby, it serves as a great model for understanding adaptations to terrestrial life. RESULTS: Comparative genomics with channel catfish (Ictalurus punctatus) revealed specific adaptations of C. batrachus in DNA repair, enzyme activator activity, and small GTPase regulator activity. Comparative analysis with 11 non-air-breathing fish species suggested adaptive evolution in gene expression and nitrogenous waste metabolic processes. Further, myoglobin, olfactory receptor related to class A G protein-coupled receptor 1, and sulfotransferase 6b1 genes were found to be expanded in the air-breathing walking catfish genome, with 15, 15, and 12 copies, respectively, compared to non-air-breathing fishes that possess only 1-2 copies of these genes. Additionally, we sequenced and compared the transcriptomes of the gill and the air-breathing organ to characterize the mechanism of aerial respiration involved in elastic fiber formation, oxygen binding and transport, angiogenesis, ion homeostasis and acid-base balance. The hemoglobin genes were expressed dramatically higher in the air-breathing organ than in the gill of walking catfish. CONCLUSIONS: This study provides an important genomic resource for understanding the adaptive mechanisms of walking catfish to terrestrial environments. It is possible that the coupling of enhanced abilities for oxygen storage and oxygen transport through genomic expansion of myoglobin genes and transcriptomic up-regulation of hemoglobin and angiogenesis-related genes are important components of the molecular basis for adaptation of this aquatic species to terrestrial life.


Subject(s)
Catfishes/genetics , Gene Expression Profiling/veterinary , Genome , Gills/metabolism , Sequence Analysis, DNA/veterinary , Adaptation, Physiological , Animals , Catfishes/physiology , Gills/physiology , Respiration , Transcriptome
14.
Front Physiol ; 9: 1113, 2018.
Article in English | MEDLINE | ID: mdl-30210354

ABSTRACT

Catfish is one of the major aquaculture species in the United States. However, the catfish industry is threatened by several bacterial diseases such as enteric septicemia of catfish (ESC), columnaris disease and Aeromonas disease, as well as by abiotic stresses such as high temperature and low oxygen. Research has been conducted for several decades to understand the host responses to these diseases and abiotic stresses. With the development of sequencing technologies, and the application of genome-wide association studies in aquaculture species, significant progress has been made. This review article summarizes recent progress in understanding the molecular responses of catfish after bacterial infection and stress challenges, and in understanding of genomic and genetic basis for disease resistance and stress tolerance.

15.
Mol Genet Genomics ; 293(6): 1365-1378, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29967962

ABSTRACT

Disease resistance is one of the most important traits for aquaculture industry. For catfish industry, enteric septicemia of catfish (ESC), caused by the bacterial pathogen Edwardsiella ictaluri, is the most severe disease, causing enormous economic losses every year. In this study, we used three channel catfish families with 900 individuals (300 fish per family) and the 690K catfish SNP array, and conducted a genome-wide association study to detect the quantitative trait loci (QTL) associated with ESC resistance. Three significant QTL, with two of located on LG1 and one on LG26, and three suggestive QTL located on LG1, LG3, and LG21, respectively, were identified to be associated with ESC resistance. With a well-assembled- and -annotated reference genome sequence, genes around the involved QTL regions were identified. Among these genes, 37 genes had known functions in immunity, which may be involved in ESC resistance. Notably, nlrc3 and nlrp12 identified here were also found in QTL regions of ESC resistance in the channel catfish × blue catfish interspecific hybrid system, suggesting this QTL was operating within both intra-specific channel catfish populations and interspecific hybrid backcross populations. Many of the genes of the Class I MHC pathway, for mediated antigen processing and presentation, were found in the QTL regions. The positional correlation found in this study and the expressional correlation found in previous studies indicated that Class I MHC pathway was significantly associated with ESC resistance. This study validated one QTL previously identified using the second and fourth generation of the interspecific hybrid backcross progenies, and identified five additional QTL among channel catfish families. Taken together, it appears that there are only a few major QTL for ESC disease resistance, making marker-assisted selection an effective approach for genetic improvements of ESC resistance.


Subject(s)
Catfishes/genetics , Disease Resistance/genetics , Edwardsiella ictaluri/immunology , Enterobacteriaceae Infections/genetics , Quantitative Trait Loci , Sepsis/genetics , Animals , Catfishes/immunology , Catfishes/microbiology , Enterobacteriaceae Infections/immunology , Fish Diseases/genetics , Fish Diseases/immunology , Genetic Linkage , Genome-Wide Association Study , Ictaluridae/genetics , Ictaluridae/immunology , Ictaluridae/microbiology , Polymorphism, Single Nucleotide , Sepsis/immunology , Sepsis/veterinary
16.
Mar Biotechnol (NY) ; 20(6): 729-738, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30014301

ABSTRACT

Alternative splicing is the process of generating multiple transcripts from a single pre-mRNA used by eukaryotes to regulate gene expression and increase proteomic complexity. Although alternative splicing profiles have been well studied in mammalian species, they have not been well studied in aquatic species, especially after biotic stresses. In the present study, genomic information and RNA-Seq datasets were utilized to characterize alternative splicing profiles and their induced changes after bacterial infection with Edwardsiella ictaluri in channel catfish (Ictalurus punctatus). A total of 27,476 alternative splicing events, derived from 9694 genes, were identified in channel catfish. Exon skipping was the most abundant while mutually exclusive exon was the least abundant type of alternative splicing. Alternative splicing was greatly induced by E. ictaluri infection with 21.9% increase in alternative splicing events. Interestingly, genes involved in RNA binding and RNA splicing themselves were significantly enriched in differentially alternatively spliced genes after infection. Sequence analyses of splice variants of a representative alternatively spliced gene, splicing factor srsf2, revealed that certain spliced transcripts may undergo nonsense-mediated decay (NMD), suggesting functional significance of the induced alternative splicing. Although statistical analysis was not possible with such large datasets, results from quantitative real-time PCR from representative differential alternative splicing events provided general validation of the bacterial infection-induced alternative splicing. This is the first comprehensive study of alternative splicing and its changes in response to bacterial infection in fish species, providing insights into the molecular mechanisms of host responses to biotic stresses.


Subject(s)
Catfishes/metabolism , Catfishes/microbiology , Edwardsiella ictaluri/pathogenicity , Alternative Splicing/genetics , Animals , Enterobacteriaceae Infections/genetics , Enterobacteriaceae Infections/metabolism , Gene Expression Profiling
17.
Proc Natl Acad Sci U S A ; 115(22): E5018-E5027, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29760055

ABSTRACT

Barbels are important sensory organs in teleosts, reptiles, and amphibians. The majority of ∼4,000 catfish species, such as the channel catfish (Ictalurus punctatus), possess abundant whisker-like barbels. However, barbel-less catfish, such as the bottlenose catfish (Ageneiosus marmoratus), do exist. Barbeled catfish and barbel-less catfish are ideal natural models for determination of the genomic basis for barbel development. In this work, we generated and annotated the genome sequences of the bottlenose catfish, conducted comparative and subtractive analyses using genome and transcriptome datasets, and identified differentially expressed genes during barbel regeneration. Here, we report that chemokine C-C motif ligand 33 (ccl33), as a key regulator of barbel development and regeneration. It is present in barbeled fish but absent in barbel-less fish. The ccl33 genes are differentially expressed during barbel regeneration in a timing concordant with the timing of barbel regeneration. Knockout of ccl33 genes in the zebrafish (Danio rerio) resulted in various phenotypes, including complete loss of barbels, reduced barbel sizes, and curly barbels, suggesting that ccl33 is a key regulator of barbel development. Expression analysis indicated that paralogs of the ccl33 gene have both shared and specific expression patterns, most notably expressed highly in various parts of the head, such as the eye, brain, and mouth areas, supporting its role for barbel development.


Subject(s)
Chemokines/metabolism , Fish Proteins/metabolism , Sense Organs/growth & development , Animals , Catfishes/genetics , Catfishes/growth & development , Catfishes/metabolism , Chemokines/genetics , Chemokines/physiology , Fish Proteins/genetics , Fish Proteins/physiology , Gene Expression Profiling , Genome/genetics , Male , Sense Organs/metabolism , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish/metabolism
18.
Physiol Genomics ; 50(8): 636-647, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29799804

ABSTRACT

Channel catfish is the leading aquaculture species in the US, and one of the reasons for its application in aquaculture is its relatively high tolerance against hypoxia. However, hypoxia can still cause huge economic losses to the catfish industry. Studies on hypoxia tolerance, therefore, are important for aquaculture. Fish swimbladder has been considered as an accessory respiration organ surrounded by a dense capillary countercurrent exchange system. In this regard, we conducted RNA-Seq analysis with swimbladder samples of catfish under hypoxic and normal conditions to determine if swimbladder was responsive to low oxygen treatment and to reveal genes, their expression patterns, and pathways involved in hypoxia responses in catfish. A total of 155 differentially expressed genes (DEGs) were identified from swimbladder of adult catfish, whereas a total of 2,127 DEGs were identified from swimbladder of fingerling catfish under hypoxic condition as compared with untreated controls. Subsequent pathway analysis revealed that many DEGs under hypoxia were involved in HIF signaling pathway ( nos2, eno2, camk2d2, prkcb, cdkn1a, eno1, and tfrc), MAPK signaling pathway (voltage-dependent calcium channel subunit genes), PI3K/Akt/mTOR signaling pathway ( itga6, g6pc, and cdkn1a), Ras signaling pathway ( efna3 and ksr2), and signaling by VEGF ( fn1, wasf3, and hspb1) in catfish swimbladder. This study provided insights into regulation of gene expression and their involved gene pathways in catfish swimbladder in response to low oxygen stresses.


Subject(s)
Air Sacs/metabolism , Gene Expression Profiling/methods , Ictaluridae/genetics , Oxygen/metabolism , Transcriptome , Animals , Fish Proteins/genetics , Hypoxia , Signal Transduction/genetics , Stress, Physiological
19.
PLoS One ; 13(5): e0197371, 2018.
Article in English | MEDLINE | ID: mdl-29763462

ABSTRACT

Channel catfish (Ictalurus punctatus) is a highly adaptive species and has been used as a research model for comparative immunology, physiology, and toxicology among ectothermic vertebrates. It is also economically important for aquaculture. As such, its reference genome was generated and annotated with protein coding genes. However, the repetitive elements in the catfish genome are less well understood. In this study, over 417.8 Megabase (MB) of repetitive elements were identified and characterized in the channel catfish genome. Among them, the DNA/TcMar-Tc1 transposons are the most abundant type, making up ~20% of the total repetitive elements, followed by the microsatellites (14%). The prevalence of repetitive elements, especially the mobile elements, may have provided a driving force for the evolution of the catfish genome. A number of catfish-specific repetitive elements were identified including the previously reported Xba elements whose divergence rate was relatively low, slower than that in untranslated regions of genes but faster than the protein coding sequences, suggesting its evolutionary restrictions.


Subject(s)
DNA Transposable Elements/genetics , Genome/genetics , Ictaluridae/genetics , Repetitive Sequences, Nucleic Acid/genetics , Animals , Microsatellite Repeats/genetics , Open Reading Frames/genetics
20.
Article in English | MEDLINE | ID: mdl-29738887

ABSTRACT

In aquatic organisms, hearing is an important sense for acoustic communications and detection of sound-emitting predators and prey. Channel catfish is a dominant aquaculture species in the United States. As channel catfish can hear sounds of relatively high frequency, it serves as a good model for study auditory mechanisms. In catfishes, Weberian ossicles connect the swimbladder to the inner ear to transfer the forced vibrations and improve hearing ability. In this study, we examined the transcriptional profiles of channel catfish swimbladder and other four tissues (gill, liver, skin, and intestine). We identified a total of 1777 genes that exhibited preferential expression pattern in swimbladder of channel catfish. Based on Gene Ontology enrichment analysis, many of swimbladder-enriched genes were categorized into sensory perception of sound, auditory behavior, response to auditory stimulus, or detection of mechanical stimulus involved in sensory perception of sound, such as coch, kcnq4, sptbn1, sptbn4, dnm1, ush2a, and col11a1. Six signaling pathways associated with hearing (Glutamatergic synapse, GABAergic synapse pathways, Axon guidance, cAMP signaling pathway, Ionotropic glutamate receptor pathway, and Metabotropic glutamate receptor group III pathway) were over-represented in KEGG and PANTHER databases. Protein interaction prediction revealed an interactive relationship among the swimbladder-enriched genes and genes involved in sensory perception of sound. This study identified a set of genes and signaling pathways associated with auditory system in the swimbladder of channel catfish and provide resources for further study on the biological and physiological roles in catfish swimbladder.


Subject(s)
Air Sacs/metabolism , Ear, Inner/metabolism , Ictaluridae/genetics , Transcriptome , Air Sacs/physiology , Animals , Ear, Inner/physiology , Gene Expression Profiling , Gene Regulatory Networks , Hearing , Ictaluridae/physiology , Vocalization, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...