Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Environ Int ; 186: 108639, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38603815

ABSTRACT

Antimicrobial resistance is considered to be one of the biggest public health problems, and airborne transmission is an important but under-appreciated pathway for the spread of antibiotic resistance genes (ARGs) in the environment. Previous research has shown pharmaceutical factories to be a major source of ARGs and antibiotic resistant bacteria (ARB) in the surrounding receiving water and soil environments. Pharmaceutical factories are hotspots of antibiotic resistance, but the atmospheric transmission and its environmental risk remain more concerns. Here, we conducted a metagenomic investigation into the airborne microbiome and resistome in three pharmaceutical factories in China. Soil (average: 38.45%) and wastewater (average: 28.53%) were major contributors of airborne resistome. ARGs (vanR/vanS, blaOXA, and CfxA) conferring resistance to critically important clinically used antibiotics were identified in the air samples. The wastewater treatment area had significantly higher relative abundances of ARGs (average: 0.64 copies/16S rRNA). Approximately 28.2% of the detected airborne ARGs were found to be associated with plasmids, and this increased to about 50% in the wastewater treatment area. We have compiled a list of high-risk airborne ARGs found in pharmaceutical factories. Moreover, A total of 1,043 viral operational taxonomic units were identified and linked to 47 family-group taxa. Different CRISPR-Cas immune systems have been identified in bacterial hosts in response to phage infection. Similarly, higher phage abundance (average: 2451.70 PPM) was found in the air of the wastewater treatment area. Our data provide insights into the antibiotic resistance gene profiles and microbiome (bacterial and non-bacterial) in pharmaceutical factories and reveal the potential role of horizontal transfer in the spread of airborne ARGs, with implications for human and animal health.


Subject(s)
Air Microbiology , Anti-Bacterial Agents , Microbiota , Wastewater , Microbiota/genetics , Microbiota/drug effects , China , Anti-Bacterial Agents/pharmacology , Wastewater/microbiology , Bacteria/genetics , Bacteria/drug effects , Drug Resistance, Microbial/genetics , Drug Resistance, Bacterial/genetics
2.
Sci Total Environ ; 927: 171991, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38547976

ABSTRACT

Landfill leachate is a hotspot in antibiotic resistance development. However, little is known about antibiotic resistome and host pathogens in leachate and their effects on surrounding groundwater. Here, metagenomic sequencing was used to explore profiles, host bacteria, environmental risks and influencing factors of antibiotic resistome in raw and treated leachate and surrounding groundwater of three landfills. Results showed detection of a total of 324 antibiotic resistance genes (ARGs). The ARGs conferring resistance to multidrug (8.8 %-25.7 %), aminoglycoside (13.1 %-39.2 %), sulfonamide (10.0 %-20.9 %), tetracycline (5.7 %-34.4 %) and macrolide-lincosamide-streptogramin (MLS, 5.3 %-29.5 %) were dominant in raw leachate, while multidrug resistance genes were the major ARGs in treated leachate (64.1 %-83.0 %) and groundwater (28.7 %-76.6 %). Source tracking analysis suggests non-negligible influence of leachate on the ARGs in groundwater. The pathogens including Acinetobacter pittii, Pseudomonas stutzeri and P. alcaligenes were the major ARG-carrying hosts. Variance partitioning analysis indicates that the microbial community, abiotic variables and their interaction contributed most to the antibiotic resistance development. Our results shed light on the dissemination and driving mechanisms of ARGs from leachate to the groundwater, indicating that a comprehensive risk assessment and efficient treatment approaches are needed to deal with ARGs in landfill leachate and nearby groundwater. ENVIRONMENTAL IMPLICATIONS: Antibiotic resistance genes are found abundant in the landfill sites, and these genes could be disseminated into groundwater via leaching of wastewater and infiltration of leachate. This results in deterioration of groundwater quality and human health risks posed by these ARGs and related pathogens. Thus measures should be taken to minimize potential negative impacts of landfills on the surrounding environment.


Subject(s)
Groundwater , Waste Disposal Facilities , Water Pollutants, Chemical , Groundwater/microbiology , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Drug Resistance, Microbial/genetics , Anti-Bacterial Agents/pharmacology , Environmental Monitoring , Bacteria/drug effects , Bacteria/genetics
3.
Sci Total Environ ; 923: 171475, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38453063

ABSTRACT

Climbazole is an azole biocide that has been widely used in formulations of personal care products. Climbazole can cause developmental toxicity and endocrine disruption as well as gut disturbance in aquatic organisms. However, the mechanisms behind gut toxicity induced by climbazole still remain largely unclear in fish. Here, we evaluate the gut effects by exposing grass carp (Ctenopharyngodon idella) to climbazole at levels ranging from 0.2 to 20 µg/L for 42 days by evaluating gene transcription and expression, biochemical analyses, correlation network analysis, and molecular docking. Results showed that climbazole exposure increased cyp1a mRNA expression and ROS level in the three treatment groups. Climbazole also inhibited Nrf2 and Keap1 transcripts as well as proteins, and suppressed the transcript levels of their subordinate antioxidant molecules (cat, sod, and ho-1), increasing oxidative stress. Additionally, climbazole enhanced NF-κB and iκBα transcripts and proteins, and the transcripts of NF-κB downstream pro-inflammatory factors (tnfα, and il-1ß/6/8), leading to inflammation. Climbazole increased pro-apoptosis-related genes (fadd, bad1, and caspase3), and decreased anti-apoptosis-associated genes (bcl2, and bcl-xl), suggesting a direct reaction to apoptosis. The molecular docking data showed that climbazole could form stable hydrogen bonds with CYP1A. Mechanistically, our findings suggested that climbazole can induce inflammation and oxidative stress through CYP450s/ROS/Nrf2/NF-κB pathways, resulting in cell apoptosis in the gut of grass carp.


Subject(s)
Carps , Dietary Supplements , Imidazoles , Animals , Dietary Supplements/analysis , Diet , NF-kappa B , Kelch-Like ECH-Associated Protein 1/metabolism , Immunity, Innate , Azoles/toxicity , NF-E2-Related Factor 2/metabolism , Molecular Docking Simulation , Reactive Oxygen Species/metabolism , Signal Transduction , Fish Proteins/genetics , Fish Proteins/metabolism , Inflammation/chemically induced , Inflammation/veterinary , Oxidative Stress , Apoptosis , Carps/metabolism
4.
J Hazard Mater ; 465: 133463, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38219582

ABSTRACT

Azole antifungal climbazole has frequently been detected in aquatic environments and shows various effects in fish. However, the underlying mechanism of toxicity through the gut-brain axis of climbazole is unclear. Here, we investigated the effects of climbazole at environmental concentrations on the microbiota-intestine-brain axis in grass carp via histopathological observation, gene expression and biochemical analyses, and high-throughput sequencing of the 16 S rRNA. Results showed that exposure to 0.2 to 20 µg/L climbazole for 42 days significantly disrupted gut microbiota and caused brain neurotoxicity in grass carp. In this study, there was an alteration in the phylum and genus compositions in the gut microbiota following climbazole treatment, including reducing Fusobacteria (e.g., Cetobacterium) and increasing Actinobacteria (e.g., Nocardia). Climbazole disrupted intestinal microbial abundance, leading to increased levels of lipopolysaccharide and tumor necrosis factor-alpha in the gut, serum, and brain. They passed through the impaired intestinal barrier into the circulation and caused the destruction of the blood-brain barrier through the gut-brain axis, allowing them into the brain. In the brain, climbazole activated the nuclear factor kappaB pathway to increase inflammation, and suppressed the E2-related factor 2 pathway to produce oxidative damage, resulting in apoptosis, which promoted neuroinflammation and neuronal death. Besides, our results suggested that this neurotoxicity was caused by the breakdown of the microbiota-gut-brain axis, mediated by reduced concentrations of dopamine, short chain fatty acids, and intestinal microbial activity induced by climbazole.


Subject(s)
Carps , Fungicides, Industrial , Imidazoles , Animals , Brain-Gut Axis , Azoles
5.
J Hazard Mater ; 465: 133082, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38016315

ABSTRACT

Antibiotic resistance genes (ARGs) are prevalent in the livestock environment, but little is known about impacts of animal farming on the gut antibiotic resistome of local people. Here we conducted metagenomic sequencing to investigate gut microbiome and resistome of residents in a swine farming village as well as environmental relevance by comparing with a nearby non-farming village. Results showed a shift of gut microbiome towards unhealthy status in the residents of swine farming village, with an increased abundance and diversity in pathogens and ARGs. The resistome composition in human guts was more similar with that in swine feces and air than that in soil and water. Mobile gene elements were closely associated with the prevalence of gut resistome. Some plasmid-borne ARGs were colocalized in similar genetic contexts in gut and environmental samples. Metagenomic binning obtained 47 ARGs-carrying families in human guts, and therein Enterobacteriaceae posed the highest threats in antibiotic resistance and virulence. Several ARGs-carrying families were shared by gut and environmental samples (mainly in swine feces and air), and the ARGs were evolutionarily conservative within genera. The findings highlight that swine farming can shape gut resistome of local people with close linkage to farm environmental exposures.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Swine , Humans , Animals , Farms , Agriculture , Livestock
6.
Water Res ; 250: 121030, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38113599

ABSTRACT

Rivers are important in spreading antimicrobial resistance (AMR). Assessing AMR risk in large rivers is challenged by large spatial scale and numerous contamination sources. Integrating river resistome data into a global framework may help addressing this difficulty. Here, we conducted an omics-based assessment of AMR in a large river (i.e. the Pearl River in China) with global microbiome data. Results showed that antibiotic resistome in river water and sediment was more diversified than that in other rivers, with contamination levels in some river reaches higher than global baselines. Discharge of WWTP effluent and landfill waste drove AMR prevalence in the river, and the resistome level was highly associated with human and animal sources. Detection of 54 risk rank I ARGs and emerging mobilizable mcr and tet(X) highlighted AMR risk in the river reaches with high human population density and livestock pollution. Florfenicol-resistant floR therein deserved priority concerns due to its high detection frequency, dissimilar phylogenetic distance, mobilizable potential, and presence in multiple pathogens. Co-sharing of ARGs across taxonomic ranks implied their transfer potentials in the community. By comparing with global genomic data, we found that Burkholderiaceae, Enterobacteriaceae, Moraxellaceae and Pseudomonadaceae were important potential ARG-carrying bacteria in the river, and WHO priority carbapenem-resistant Enterobacteriaceae, A. baumannii and P. aeruginosa should be included in future surveillance. Collectively, the findings from this study provide an omics-benchmarked assessment strategy for public risk associated with AMR in large rivers.


Subject(s)
Genes, Bacterial , Microbiota , Animals , Humans , Rivers/microbiology , Phylogeny , Drug Resistance, Microbial/genetics , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa
7.
Aquat Toxicol ; 263: 106698, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37722153

ABSTRACT

Climbazole, an azole, is widely used in personal care products, pharmaceuticals, and pesticides and is frequently detected in surface water. Climbazole has showed endocrine-disrupting effects. However, the effects of climbazole in fish are still largely unclear. In this study, grass carp (Ctenopharyngodon idella) and liver cell lines (L8824 cells) were treated with climbazole at concentrations ranging from 0.2 to 20 µg/L for 42 days in vivo and 24 h in vitro to evaluate the effects on the liver, respectively. Pathological, biochemical, and gene transcription and expression analyses were conducted to examine the hepatotoxicity. Our results showed that climbazole significantly decreased the hepatosomatic index, caused cell apoptosis in vivo and in vitro, and finally accumulated lipids in the liver. Beside, climbazole increased ROS levels, reduced Nrf2 and Keap1 mRNA and protein levels, and further decreased transcription of Nrf2-dependent downstream antioxidant enzyme genes, causing oxidative stress. Moreover, climbazole increased transcription and protein levels of apoptosis-related genes. Finally, climbazole damaged mitochondrial function and structure, disrupted liver lipid metabolism. Overall, climbazole caused hepatotoxicity, leading to a high ecological risk for aquatic organisms.

8.
ISME Commun ; 3(1): 34, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37081217

ABSTRACT

Acinetobacter is present in the livestock environment, but little is known about their antibiotic resistance and pathogenic species in the farm groundwater. Here we investigated antibiotic resistance of Acinetobacter in the swine farm groundwater (JZPG) and residential groundwater (JZG) of a swine farming village, in comparison to a nearby (3.5 km) non-farming village (WTG) using metagenomic and culture-based approaches. Results showed that the abundance of antibiotic resistome in some JZG and all JZPG (~3.4 copies/16S rRNA gene) was higher than that in WTG (~0.7 copies/16S rRNA gene), indicating the influence of farming activities on both groundwater types. Acinetobacter accounted for ~95.7% of the bacteria in JZG and JZPG, but only ~8.0% in WTG. They were potential hosts of ~95.6% of the resistome in farm affected groundwater, which includes 99 ARG subtypes against 23 antibiotic classes. These ARGs were associated with diverse intrinsic and acquired resistance mechanisms, and the predominant ARGs were tetracyclines and fluoroquinolones resistance genes. Metagenomic binning analysis elucidated that non-baumannii Acinetobacter including A. oleivorans, A. beijerinckii, A. seifertii, A. bereziniae and A. modestus might pose environmental risks because of multidrug resistance, pathogenicity and massive existence in the groundwater. Antibiotic susceptibility tests showed that the isolated strains were resistant to multiple antibiotics including sulfamethoxazole (resistance ratio: 96.2%), levofloxacin (42.5%), gatifloxacin (39.0%), ciprofloxacin (32.6%), tetracycline (32.0%), doxycycline (29.0%) and ampicillin (12.0%) as well as last-resort polymyxin B (31.7%), colistin (24.1%) and tigecycline (4.1%). The findings highlight potential prevalence of groundwater-borne antibiotic-resistant pathogenic Acinetobacter in the livestock environment.

9.
J Hazard Mater ; 452: 131208, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36966625

ABSTRACT

Antibiotics are increasingly used and released into the marine environment due to the rapid development of mariculture, resulting in spread of antibiotic resistance. The pollution, distribution, and characteristics of antibiotics, antibiotic resistance genes (ARGs) and microbiomes have been investigated in this study. Results showed that 20 antibiotics were detected in Chinese coastal environment, with predominance of erythromycin-H2O, enrofloxacin and oxytetracycline. In coastal mariculture sites, antibiotic concentrations were significantly higher than in control sites, and more types of antibiotics were detected in the South than in the North of China. Residues of enrofloxacin, ciprofloxacin and sulfadiazine posed high resistance selection risks. ß-Lactam, multi-drug and tetracycline resistance genes were frequently detected with significantly higher abundance in the mariculture sites. Of the 262 detected ARGs, 10, 26, and 19 were ranked as high-risk, current-risk, future-risk, respectively. The main bacterial phyla were Proteobacteria and Bacteroidetes, of which 25 genera were zoonotic pathogens, with Arcobacter and Vibrio in particular ranking in the top10. Opportunistic pathogens were more widely distributed in the northern mariculture sites. Phyla of Proteobacteria and Bacteroidetes were the potential hosts of high-risk ARGs, while the conditional pathogens were associated with future-risk ARGs, indicating a potential threat to human health.


Subject(s)
Anti-Bacterial Agents , Microbiota , Humans , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Enrofloxacin , Bacteria/genetics , Bacteroidetes , Proteobacteria/genetics
10.
Environ Int ; 172: 107784, 2023 02.
Article in English | MEDLINE | ID: mdl-36731187

ABSTRACT

Antimicrobial resistance is recognized as one of the greatest public health concerns. It is becoming an increasingly threat during the COVID-19 pandemic due to increasing usage of antimicrobials, such as antibiotics and disinfectants, in healthcare facilities or public spaces. To explore the characteristics of airborne antibiotic resistome in public transport systems, we assessed distribution and health risks of airborne antibiotic resistome and microbiome in railway stations before and after the pandemic outbreak by culture-independent and culture-dependent metagenomic analysis. Results showed that the diversity of airborne antibiotic resistance genes (ARGs) decreased following the pandemic, while the relative abundance of core ARGs increased. A total of 159 horizontally acquired ARGs, predominantly confering resistance to macrolides and aminoglycosides, were identified in the airborne bacteria and dust samples. Meanwhile, the abundance of horizontally acquired ARGs hosted by pathogens increased during the pandemic. A bloom of clinically important antibiotic (tigecycline and meropenem) resistant bacteria was found following the pandemic outbreak. 251 high-quality metagenome-assembled genomes (MAGs) were recovered from 27 metagenomes, and 86 genera and 125 species were classified. Relative abundance of ARG-carrying MAGs, taxonomically assigned to genus of Bacillus, Pseudomonas, Acinetobacter, and Staphylococcus, was found increased during the pandemic. Bayesian source tracking estimated that human skin and anthropogenic activities were presumptive resistome sources for the public transit air. Moreover, risk assessment based on resistome and microbiome data revealed elevated airborne health risks during the pandemic.


Subject(s)
COVID-19 , Microbiota , Humans , Genes, Bacterial , Pandemics , Anti-Bacterial Agents/pharmacology , Bayes Theorem , Bacteria/genetics
11.
Environ Int ; 172: 107751, 2023 02.
Article in English | MEDLINE | ID: mdl-36680804

ABSTRACT

Globally extensive use of antibiotics has accelerated antimicrobial resistance (AMR) in the environment. As one of the biggest antibiotic consumers, livestock farms are hotspots in AMR prevalence, especially those in the atmosphere can transmit over long distances and pose inhalation risks to the public. Here, we collected total suspended particulates in swine farms and ambient air of an intensive swine farming area. Bacterial communities and antibiotic resistomes were analyzed using amplicon and metagenomic sequencing approaches. AMR risks and inhalation exposure to potential human-pathogenic antibiotic-resistant bacteria (HPARB) were subsequently estimated with comparison to the reported hospital samples. The results show that swine farms shaped the airborne bacterial community by increasing abundances, reducing diversities and shifting compositions. Swine feces contributed 77% of bacteria to swine farm air, and about 35% to ambient air. Airborne antibiotic resistomes in swine farms mainly conferred resistance to tetracyclines, aminoglycosides and lincosamides, and over 48% were originated from swine feces. Distinct to the hospital air, Firmicutes were dominant bacteria in swine farming environments with conditional pathogens including Clostridium, Streptococcus and Aerococcus being major hosts of antibiotic resistance genes (ARGs). Therein, genomes of S. alactolyticus carrying (transposase/recombinase-associated) ARGs and virulence factor genes were retrieved from the metagenomes of all swine feces and swine farm air samples, but they were not detected in any hospital air samples. This suggests the indication of S. alactolyticus in swine farming environments with potential hazards to human health. Swine farm air faced higher AMR risks than hospital air and swine feces. The inhalation intake of HPARB by a swine farm worker was about three orders of magnitude higher than a person who works in the hospital. Consequently, this study depicted atmospheric transmission of bacteria and antibiotic resistomes from swine feces to the environment.


Subject(s)
Anti-Bacterial Agents , Livestock , Swine , Humans , Animals , Anti-Bacterial Agents/pharmacology , Farms , Livestock/genetics , Genes, Bacterial , Metagenome , Bacteria/genetics , Agriculture , Drug Resistance, Bacterial/genetics
12.
Environ Pollut ; 312: 119978, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35987289

ABSTRACT

Emission of antibiotics into riverine environments affects aquatic ecosystem functions and leads to the development of antibiotic resistance. Here, the profiles of forty-four antibiotics and eighteen antibiotic resistance genes (ARGs) were analyzed in two large rivers of the Pearl River System. In addition, the risks of ecotoxicity and resistance selection posed by the antibiotics were estimated. As compared to the reservoirs, the river sections close to the urban and livestock areas contained more antibiotics and ARGs. Seasonal variations of antibiotics (higher in the dry season) and relative ARGs (normalized by 16S rRNA gene, higher in the wet season) were found in the water, but not in the sediment. Sulfonamide resistance genes were the most prevalent ARGs in both river water and sediment. Antibiotic concentration was correlated with ARG abundance in the water, indicating that antibiotics play a critical role in ARG spread. In addition, oxytetracycline was the most abundant antibiotic with concentrations up to 2030 ng/L in the water and 2100 ng/g in the sediment respectively, and posed the highest risks for resistance selection. Oxytetracycline, tetracycline and sulfamethoxazole were expected to be more ecotoxicologically harmful to aquatic organisms, while ofloxacin, enrofloxacin, norfloxacin, chlortetracycline, oxytetracycline and tetracycline posed ecotoxicological risks in the sediment. The Nanliujiang river with intensive livestock activities was contaminated by antibiotics and ARGs and faced high ecotoxicological and resistance selection risks. Collectively, these findings reflect the impacts of anthropogenic activities on the spread of antibiotic resistance in large river basins.


Subject(s)
Chlortetracycline , Oxytetracycline , Anthropogenic Effects , Anti-Bacterial Agents/analysis , China , Drug Resistance, Microbial/genetics , Ecosystem , Enrofloxacin , Genes, Bacterial , Norfloxacin , Ofloxacin , RNA, Ribosomal, 16S/genetics , Rivers , Sulfamethoxazole , Sulfonamides , Water
13.
Huan Jing Ke Xue ; 43(3): 1512-1520, 2022 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-35258215

ABSTRACT

Disinfection byproducts (DBPs) in drinking water distribution systems are affected by multi-factors, such as basic water quality parameters, microbial community structures, and residual organic pollutants that cannot be removed by the water treatment process. The relationship between the above-mentioned factors that forms a complicated network structure, which causes the dominating factor that affects DBPs formation unclear. This study investigated the water quality in regional tap water in January-February 2021. Trihalomethanes were determined using P&T-GC-MS, and antibiotics and nitrosamines were determined using UPLC-MS/MS. Microbial communities were determined using Illumina 16S rRNA gene sequencing. A Bayesian network was constructed to evaluate the intercorrelation between the factors. Three species of trihalomethanes, six species of nitrosamines, 23 types of antibiotics, and 236 OTUs were detected in the tap water. The mass concentrations of trihalomethanes, nitrosamines, and antibiotics were 18.33-32.09 µg·L-1, 13.08-53.50 ng·L-1, and 47.92-210.33 ng·L-1, respectively. The dominant microbial orders were Rhizobiales and Caulobacterales. Based on the Bayesian-network inference, tetracycline, sulfonamides, and macrocyclic antibiotics were precursors of trihalomethanes, whereas tetracyclines were the nitrosamine precursor. The abundances of Caulobacterales and Corynebacteriales were both affected by antibiotics and associated with DBPs formation. The extracellular polymeric substances of these bacteria were highly suspected to be important DBPs precursors. The results of the proposed project revealed the internal relationship between multi-water-quality parameters and DBPs formation, which could provide a theoretical support to guarantee the safety of drinking water.


Subject(s)
Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Bayes Theorem , Chromatography, Liquid , Disinfectants/analysis , Disinfection/methods , Drinking Water/analysis , Factor Analysis, Statistical , Halogenation , RNA, Ribosomal, 16S , Tandem Mass Spectrometry , Trihalomethanes , Water Pollutants, Chemical/analysis , Water Purification/methods
14.
Environ Int ; 158: 106927, 2022 01.
Article in English | MEDLINE | ID: mdl-34673316

ABSTRACT

Animal farms have been considered as the critical reservoir of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB). Spread of antibiotic resistance from animal farms to the surrounding environments via aerosols has become a growing concern. Here we investigated the dispersal pattern and exposure risk of airborne ARGs (especially in zoonotic pathogens) in the environment of chicken and dairy farms. Aerosol, dust and animal feces samples were collected from the livestock houses and surrounding environments (upwind and downwind areas) for assessing ARG profiles. Antibiotic resistance phenotype and genotype of airborne Staphylococcus spp. was especially analyzed to reveal the exposure risk of airborne ARGs. Results showed that airborne ARGs were detected from upwind (50 m/100 m) and downwind (50 m/100 m/150 m) air environment, wherein at least 30% of bacterial taxa dispersed from the animal houses. Moreover, atmospheric dispersion modeling showed that airborne ARGs can disperse from the animal houses to a distance of 10 km along the wind direction. Clinically important pathogens were identified in airborne culturable bacteria. Genus of Staphylococcus, Sphingomonas and Acinetobacter were potential bacterial host of airborne ARGs. Airborne Staphylococcus spp. were isolated from the environment of chicken farm (n = 148) and dairy farm (n = 87). It is notable that all isolates from chicken-related environment were multidrug-resistance (>3 clinical-relevant antibiotics), with more than 80% of them carrying methicillin resistance gene (mecA) and associated ARGs and MGEs. Presence of numerous ARGs and diverse pathogens in dust from animal houses and the downwind residential areas indicated the accumulation of animal feces origin ARGs in bioaerosols. Employees and local residents in the chick farming environment are exposed to chicken originated ARGs and multidrug resistant Staphylococcus spp. via inhalation. This study highlights the potential exposure risks of airborne ARGs and antibiotic resistant pathogens to human health.


Subject(s)
Genes, Bacterial , Methicillin-Resistant Staphylococcus aureus , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Animals , Anti-Bacterial Agents/pharmacology , Chickens , Drug Resistance, Microbial , Farms , Humans
15.
Sci Total Environ ; 806(Pt 4): 151476, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34742952

ABSTRACT

Anthropogenic activities have inevitably impacted riverine ecosystems, yet their overall contribution to the assemblage of bacterial communities at a large river basin scale remains unclear. In this study, 16S amplicon sequencing was implemented to investigate the bacterial ecosystems in paired water and sediment of North River and West River basins in South China., which contains various anthropogenic environments (e.g., rural/urban area, mining area and livestock area). Subsequently, the links between bacterial community and various types of emerging pollutants in river water were analyzed. The results show that the bacterial assemblage of water and sediment had their own properties that the bacterial community of sediment were mainly affected by seasonal properties, while the bacterial community of water were affected by both seasons and anthropogenic activities. Therein, the aquatic bacterial compositions and abundances were driven by changes in temperature, dissolved oxygen and the emerging pollutants. The dominant phyla Proteobacteria and Firmicutes exhibited adaptability to the mining-affected regions, therein many clades (e.g., Beijerinckiaceae, Acetobacteraceae and Mycobacteriaceae) were also prevalent in the livestock-affected and densely-populated regions. In addition, these two phyla presented associations to the antibiotic resistance in water. The levels of antibiotics, relative antibiotic resistance gens (ARGs) and non-antibiotic pharmaceuticals (NAPs) were closely related to bacterial community composition, diversity and functional diversity, indicating their drive in shifting bacterial communities. Collectively, this work provides a basis for understanding the contribution of anthropogenic activities in shifting bacterial community at a large river basin scale. Further, the results provide new insights for expansion of ecological assessment.


Subject(s)
Ecosystem , Rivers , Bacteria/genetics , China , Seasons
16.
Sci Total Environ ; 808: 152042, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34856250

ABSTRACT

Increasing use of feed and medicine in mariculture could cause negative environmental impacts such as habitat modification, microbial disease development and antibiotic resistance. Here we investigated contamination of antibiotics and antibiotic resistance genes (ARGs), and composition of microbial community in grouper mariculture systems in Hainan province, China. Results showed detection of various antibiotic residues with the dominance of fluoroquinolones and tetracyclines in the six grouper cultivation systems. The concentrations of the detected antibiotics in the grouper mariculture water were significantly higher than those in the original seawater. Some of the detected antibiotics such as enrofloxacin, ciprofloxacin, ofloxacin, oxytetracycline and erythromycin in the mariculture water and/or sediment would pose high resistance selection risks. Sulfonamides resistance genes sul1 and sul2 were found to be predominant in water and sediment, while tetracycline resistance genes were prevalent in fish gill and gut. The dominant bacterial phyla in water and sediments were Bacteroides, Actinomycetes, and Proteobacteria, while the dominant ones in fish gill and gut were the Proteobacteria. Genera of Vibrio and Mycobacterium in the core microbiota were important zoonotic pathogens, and there was a significant positive correlation between Vibrio and ARGs. Phyla of Proteobacteria, Actinomyces, and Cyanobacteria were positively correlated to ARGs, indicating that these microorganisms are potential hosts of ARGs. The putative functions of microbiome related to antibiotic resistance and human diseases were significantly higher in fish than in the mariculture environment. This study suggests that mariculture system is a reservoir of ARGs, and the use of antibiotics in mariculture could induce the increase of antibiotic resistance and the prevalence of opportunistic pathogens.


Subject(s)
Bass , Microbiota , Animals , Anti-Bacterial Agents/pharmacology , Aquaculture , China , Drug Resistance, Microbial/genetics , Genes, Bacterial , Humans
17.
Ecotoxicol Environ Saf ; 227: 112908, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34673415

ABSTRACT

Incomplete removal of antibiotics and antibiotic resistance genes (ARGs) has often been reported in wastewater treatment plants. More efficient treatment processes are needed to reduce their risks to the environment. Herein, we evaluated the degradation of antibiotics and ARGs by using magnetic anion exchange resin (MAER) as UV-Fenton catalyst. Sulfamethoxazole (SMZ), ofloxacin (OFX), and amoxicillin (AMX) were selected as the target compounds. The three antibiotics were almost completely degraded (> 99%) following the MAER UV-Fenton reaction for 30 min. From the degradation mechanism study, it was found that Fe3+/Fe2+ could be cyclically transferred from the catalyst at permeable interface, and the photo-generated electrons could be effectively separated. The dominant reactive radicals for antibiotics degradation were hydroxide during the MAER UV-Fenton reaction. The degradation pathway for sulfamethoxazole was proposed. In addition, wastewater samples from a wastewater treatment plant were applied to investigate the removal efficiency of antibiotics and their ARGs by the MAER UV-Fenton system. A rapid decrease in antibiotics and ARGs level was observed with this reaction system. The results from this study suggest that the MAER-mediated UV-Fenton reaction could be applied for the effective removal of antibiotics and ARGs in wastewater.


Subject(s)
Anti-Bacterial Agents , Water Purification , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Hydrogen Peroxide , Magnetic Phenomena , Wastewater
18.
Huan Jing Ke Xue ; 42(8): 3799-3807, 2021 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-34309266

ABSTRACT

Antibiotic resistance genes (ARGs) pose a serious threat to environmental biology and public health, along with the discharge and spread of wastewater. The advanced treatment of ARGs in wastewater therefore deserves special attention. In our previous study, we found that tidal flow constructed wetlands can effectively remove multiple ammonia from wastewater. In this study, we further optimized tidal flow constructed wetland systems by adding baffles and cultivating plants; we investigated the influence of process optimization on the removal of ARGs and the influence of functional microorganism distribution on nitrogen removal. The results show that the addition of baffles and plants can effectively improve the removal efficiency of ARGs, with the maximum removal rate of 21 resistance genes, in 7 categories, reaching 83.82%-100.0% with the simultaneous addition of baffles and plants. These removal rates were significantly higher than the increase resulting from a single baffle or plant group. From the comparison of the absolute abundance of ARGs in the substrate and plants, it is clear that the baffles can promote the enrichment of ARGs in the wetland substrate, while uptake by plants is also a way of removing ARGs. Combined with the results of nitrogen-cycle functional gene sequencing, system optimization can increase the diversity and richness of nitrification and denitrification functional microorganisms in the substrate, which is consistent with the higher removal rate of nitrification and total nitrogen in wastewater.


Subject(s)
Anti-Bacterial Agents , Wetlands , Denitrification , Drug Resistance, Microbial/genetics , Nitrification , Nitrogen , Waste Disposal, Fluid , Wastewater/analysis
19.
Sci Total Environ ; 787: 147582, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-33992936

ABSTRACT

Soil antibiotic resistance due to animal manure application is of great concern in recent years. Little is known about the fate of antibiotic resistance genes (ARGs) in agricultural soils associated with long-term manure application. Here we used soil microcosms to investigate the dissipation of ARGs and the change of bacterial community in agricultural soil originated from a vegetable field which had received 24 years' swine manure application. Soil microcosms were conducted at different soil moistures and with or without biochar over a testing period of two years in lab. Results showed that continuous manure application induced an accumulation of ARGs in soil, wherein the dissipation of ARGs differed from those in non-manure amended soil. ARGs persisted in soils at least two years, although their abundance declined gradually. Meanwhile, soil moisture and biochar had significant impact on the fate of ARGs. ARGs dissipated faster in soil with higher moisture. Biochar amendment contributed to the maintenance of bacterial diversity. Within the two years of simulation experiment, biochar enhanced soil ARG retention as they dissipated slowly in the soil amended with biochar. Succession of microbial community may have sustained the transfer and resilience of ARGs. This study provides insight into the dissipation of antibiotic resistance genes in manure-applied agricultural soil.


Subject(s)
Manure , Soil , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial , Soil Microbiology , Swine
20.
Sci Total Environ ; 772: 145516, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-33571766

ABSTRACT

Mining activities are known to generate a large amount of mine tailings and acid mine drainage which contain varieties of heavy metals. Heavy metals play an important role in co-selection for bacterial antibiotic resistance. However, the characteristics of antibiotic resistance genes (ARGs) in mining-affected water environments are still unclear. Here we investigated the pollution of metals, profiles of ARGs, mobile genetic elements (MGEs) and microbial community in mining-affected surface water and groundwater. The results showed that in the tested water samples, the concentrations of Zn and Mn were the highest, and Ni was the lowest. Higher abundances of ARGs with great proportion of sulfonamides, chloramphenicols and tetracyclines resistance genes were found in mining-affected water when compared with those without mining activities. Additionally, there were positive correlations between heavy metals (especially Ni, Zn and Mn) and these ARGs. Linear regression analysis suggested that MGEs were positively correlated with ARGs. In addition, total phosphorus was correlated with ARGs (p < 0.05). The microbial community was different between the mining-affected water and the reference (p < 0.05). Proteobacteria, Bacteroidetes and Actinobacteria were dominant phyla in the surface water and groundwater. Network analysis showed that many ARGs were significantly associated with these dominant bacteria, which suggested they might be potential hosts for these ARGs. These findings provide a clear evidence that the mining activities in the study area had a significant impact on surface water and groundwater to different degrees.


Subject(s)
Anti-Bacterial Agents , Groundwater , Anti-Bacterial Agents/analysis , Drug Resistance, Microbial/genetics , Genes, Bacterial , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...