Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Front Genet ; 11: 593273, 2020.
Article in English | MEDLINE | ID: mdl-33193737

ABSTRACT

Karyopherin α2 (KPNA2) was reported to be overexpressed and have unfavorable prognostic effects in many malignancies including hepatocellular carcinoma (HCC). Although its contributions to inflammatory response were reported in many studies, its specific associations with immune infiltrations and immune pathways during cancer progression were unclear. Here, we aimed to identify new markers for HCC diagnosis and prognosis through KPNA2-associated immune analyses. RNA-seq expression data of HCC datasets were downloaded from The Cancer Genome Atlas and International Cancer Genome Consortium. The gene expressions were counts per million normalized. The infiltrations of 24 kinds of immune cells in the samples were evaluated with ImmuCellAI (Immune Cell Abundance Identifier). The Spearman correlations of the immune infiltrations with KPNA2 expression were investigated, and the specific positive correlation of B-cell infiltration with KPNA2 expression in HCC tumors was identified. Fifteen genes in KEGG (Kyoto Encyclopedia of Genes and Genomes) B-cell receptor signaling pathway presented significant correlations with KPNA2 expression in HCC. Among them, GRB2 and NRAS were indicated to be independent unfavorable prognostic factors for HCC overall survival. Clinical Proteomic Tumor Analysis Consortium HCC dataset was investigated to validate the results at protein level. The upregulation and unfavorable prognostic effects of KPNA2 and GRB2 were confirmed, whereas, unlike its mRNA form, NRAS protein was presented to be downregulated and have favorable prognostic effects. Through receiver operating characteristic curve analysis, the diagnostic potential of the three proteins was shown. The RNA-binding proteins (RBPs) of KPNA2, NRAS, and GRB2, downloaded via The Encyclopedia of RNA Interactomes, were investigated for their clinical significance in HCC at protein level. An eight-RBP signature with independent prognostic value and dysregulations in HCC was identified. All the RBPs were significantly correlated with MKI67 expression and at least one of KPNA2, GRB2, and NRAS at protein level in HCC, indicating their roles in HCC progression and the regulation of the three proteins. We concluded that KPNA2, GRB2, NRAS, and their RBPs might have coordinating roles in HCC immunoregulation and progression. They might be new markers for HCC diagnosis and prognosis predication and new targets for HCC immunotherapy.

2.
J Cancer ; 11(11): 3124-3143, 2020.
Article in English | MEDLINE | ID: mdl-32231717

ABSTRACT

Background: Peroxiredoxins (PRDXs) were reported to be associated with inflammation response in previous studies. In colon adenocarcinoma (COAD), however, their correlations and clinical significance were unclear. Methods: The RNA-seq data of 452 COAD patients with clinical information was downloaded from The Cancer Genome Atlas (TCGA) and transcripts per million (TPM) normalized. Comparisons of relative expressions of PRDXs between COAD tumor and normal controls were applied. PRDXs dy-regulations in COAD were validated via Oncomine, Human Protein Atlas (HPA) and Gene Expression Omnibus (GEO) repository. Through Tumor Immune Estimation Resource (TIMER), the immune estimation of TCGA-COAD patients was downloaded and the dy-regulated PRDXs were analyzed for their correlations with immune infiltrations in COAD. The TCGA-COAD patients were divided into younger group (age≤65 years) and older group (age>65 years) to investigate the prognostic roles of age, TNM stage, dy-regulated PRDXs and the immune infiltrations in different age groups through Kaplan-Meier survival and Cox regression analyses. Results: Three of the PRDX members showed their expressional differences both at protein and mRNA level. PRDX2 was consistently up-regulated while PRDX6 down-regulated in COAD. PRDX1 was overexpressed (mRNA) while nuclear absent (protein) in the tumor tissues. PRDX1 overexpression and PRDX6 under-expression were also shown in the stem-like colonospheres from colon cancer cells. Via TIMER, PRDX1, PRDX2, and PRDX6 were found to be negatively correlated with the immune infiltrations in COAD. Both in the younger and older patients, TNM stage had prognostic effects on their overall survival (OS) and recurrence-free survival (RFS). CD4+ T cell had independent unfavorable effects on OS of the younger patients while age had similar effects on RFS of the older ones. CD8+ T cell was independently prognostic for RFS in the two groups. Conclusions: Late diagnosis indicated poor prognosis in COAD and dy-regulated PRDXs w might be new markers for its early diagnosis. Age was prognostic and should be considered in the treatments of the older patients. Dy-regulated PRDXs were negatively correlated with immune infiltration levels. CD4+ T cell and CD8+ T cell infiltrations were prognostic in COAD and their potential as immune targets needed further investigation.

3.
J Cell Mol Med ; 24(10): 5615-5628, 2020 05.
Article in English | MEDLINE | ID: mdl-32243691

ABSTRACT

Fibroblast-myofibroblast transdifferentiation (FMT) is widely recognized as the major pathological feature of renal fibrosis. Although melatonin has exerted antifibrogenic activity in many diseases, its role in renal FMT remains unclear. In the present study, the aim was to explore the effect of melatonin on renal FMT and the underlying mechanisms. We established the transforming growth factor (TGF)-ß1 stimulated rat renal fibroblast cells (NRK-49F) model in vitro and unilateral ureteral obstruction (UUO) mice model in vivo. We assessed levels of α-smooth muscle actin (α-SMA), col1a1 and fibronectin, STAT3 and AP-1, as well as miR-21-5p and its target genes (Spry1, PTEN, Smurf2 and PDCD4). We found that melatonin reduced the expression of α-SMA, col1a1 and fibronectin, as well as the formation of α-SMA filament in TGF-ß1-treated NRK-49F cells. Meanwhile, melatonin inhibited STAT3 phosphorylation, down-regulated miR-21-5p expression, and up-regulated Spry1 and PTEN expression. Moreover, miR-21-5p mimics partially antagonized the anti-fibrotic effect of melatonin. For animal experiments, the results revealed that melatonin remarkably ameliorated UUO-induced renal fibrosis, attenuated the expression of miR-21-5p and pro-fibrotic proteins and elevated Spry1 and PTEN expression. Nevertheless, agomir of miR-21-5p blocked the renoprotective effect of melatonin in UUO mice. These results indicated that melatonin could alleviate TGF-ß1-induced renal FMT and UUO-induced renal fibrosis through down-regulation of miR-21-5p. Regulation of miR-21-5p/PTEN and/or miR-21-5p/Spry1 signal might be involved in the anti-fibrotic effect of melatonin in the kidneys of UUO mice.


Subject(s)
Cell Transdifferentiation/drug effects , Fibroblasts/cytology , Fibroblasts/drug effects , Kidney Diseases/etiology , Melatonin/pharmacology , Myofibroblasts/cytology , Myofibroblasts/drug effects , Actins/genetics , Actins/metabolism , Animals , Biomarkers , Cell Survival/drug effects , Disease Models, Animal , Disease Susceptibility , Fibroblasts/metabolism , Fibrosis , Gene Expression , Humans , Kidney Diseases/metabolism , Kidney Diseases/pathology , Male , Mice , Mice, Knockout , Myofibroblasts/metabolism , PTEN Phosphohydrolase/metabolism , Rats , Transforming Growth Factor beta1/pharmacology
4.
Front Genet ; 11: 273, 2020.
Article in English | MEDLINE | ID: mdl-32265992

ABSTRACT

To explore the potential functions and clinical significances of peroxisomes during lung cancer development and progression, we investigated the expressional profiles of peroxisome pathway genes and their correlations with clinical features in non-small cell lung cancer (NSCLC). The RNA-seq data of NSCLC including lung squamous carcinoma (LUSC) and lung adenocarcinoma (LUAD) patients with their clinical information were downloaded from The Cancer Genome Atlas (TCGA). Gene expression comparisons between tumor and normal samples were performed with edgeR package in R software and the results of the 83 peroxisome pathway genes were extracted. Through Venn diagram analysis, 38 common differentially expressed peroxisome pathway genes (C-DEPGs) in NSCLC were identified. Principal components analysis (PCA) was performed and the 38 C-DEPGs could discriminate NSCLC tumors from the non-tumor controls well. Through Kaplan-Meier survival and Cox regression analyses, 11 of the C-DEPGs were shown to have prognostic effects on NSCLC overall survival (OS) and were considered as key C-DEPGs (K-DEPGs). Through Oncomine, Human Protein Atlas (HPA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC), three K-DEPGs (HSD17B4, ACAA1, and PXMP4) were confirmed to be down-regulated in NSCLC at both mRNA and protein level. Their dy-regulation mechanisms were revealed through their correlations with their copy number variations and methylation status. Their potential functions in NSCLC were explored through their NSCLC-specific co-expression network analysis, their correlations with immune infiltrations, immunomodulator gene expressions, MKI67 expression and their associations with anti-cancer drug sensitivity. Our findings suggested that HSD17B4, ACAA1, and PXMP4 might be new markers for NSCLC diagnosis and prognosis and might provide new clues for NSCLC treatment.

5.
PeerJ ; 7: e6375, 2019.
Article in English | MEDLINE | ID: mdl-30755830

ABSTRACT

BACKGROUND: Alcohol-related hepatocellular carcinoma (HCC) was reported to be diagnosed at a later stage, but the mechanism was unknown. This study aimed to identify special key genes (SKGs) during alcohol-related HCC development and progression. METHODS: The mRNA data of 369 HCC patients and the clinical information were downloaded from the Cancer Genome Atlas project (TCGA). The 310 patients with certain HCC-related risk factors were included for analysis and divided into seven groups according to the risk factors. Survival analyses were applied for the HCC patients of different groups. The patients with hepatitis B virus or hepatitis C virus infection only were combined into the HCC-V group for further analysis. The differentially expressed genes (DEGs) between the HCCs with alcohol consumption only (HCC-A) and HCC-V tumors were identified through limma package in R with cutoff criteria│log2 fold change (logFC)|>1.0 and p < 0.05. The DEGs between eight alcohol-related HCCs and their paired normal livers of GSE59259 from the Gene Expression Omnibus (GEO) were identified through GEO2R (a built-in tool in GEO database) with cutoff criteria |logFC|> 2.0 and adj.p < 0.05. The intersection of the two sets of DEGs was considered SKGs which were then investigated for their specificity through comparisons between HCC-A and other four HCC groups. The SKGs were analyzed for their correlations with HCC-A stage and grade and their prognostic power for HCC-A patients. The expressional differences of the SKGs in the HCCs in whole were also investigated through Gene Expression Profiling Interactive Analysis (GEPIA). The SKGs in HCC were validated through Oncomine database analysis. RESULTS: Pathological stage is an independent prognostic factor for HCC patients. HCC-A patients were diagnosed later than HCC patients with other risk factors. Ten SKGs were identified and nine of them were confirmed for their differences in paired samples of HCC-A patients. Three (SLC22A10, CD5L, and UROC1) and four (SLC22A10, UROC1, CSAG3, and CSMD1) confirmed genes were correlated with HCC-A stage and grade, respectively. SPP2 had a lower trend in HCC-A tumors and was negatively correlated with HCC-A stage and grade. The SKGs each was differentially expressed between HCC-A and at least one of other HCC groups. CD5L was identified to be favorable prognostic factor for overall survival while CSMD1 unfavorable prognostic factor for disease-free survival for HCC-A patients and HCC patients in whole. Through Oncomine database, the dysregulations of the SKGs in HCC and their clinical significance were confirmed. CONCLUSION: The poor prognosis of HCC-A patients might be due to their later diagnosis. The SKGs, especially the four stage-correlated genes (CD5L, SLC22A10, UROC1, and SPP2) might play important roles in HCC development, especially alcohol-related HCC development and progression. CD5L might be useful for overall survival and CSMD1 for disease-free survival predication in HCC, especially alcohol-related HCC.

6.
Biosci Rep ; 36(2)2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26772992

ABSTRACT

The current study was conducted with the hypothesis that failure of maintenance of the vascular tone may be central to failure of the peripheral circulation and spiralling down of blood pressure in sepsis. Namely, we examined the balance between expression of myosin light chain (MLC) phosphatase and kinase, enzymes that regulate MLCs dephosphorylation and phosphorylation with a direct effect on pharmacomechanical coupling for smooth muscle relaxation and contraction respectively. Mechanical recordings and enzyme immunoassays of vascular smooth muscle lysates were used as the major methods to examine arterial biopsy samples from terminally ill sepsis patients. The results of the present study provide evidence that genomic alteration of expression of key regulatory proteins in vascular smooth muscles may be responsible for the relentless downhill course in sepsis. Down-regulation of myosin light chain kinase (MLCK) and up-regulation of MLCK may explain the loss of tone and failure to mount contractile response in vivo during circulation. The mechanical studies demonstrated the inability of the arteries to develop tone when stimulated by phenylephrine in vitro. The results of our study provide indirect hint that control of inflammation is a major therapeutic approach in sepsis, and may facilitate to ameliorate the progressive cardiovascular collapse.


Subject(s)
Muscle, Smooth/metabolism , Myosin-Light-Chain Kinase/metabolism , Sepsis/metabolism , Terminally Ill , Ubiquitin-Protein Ligases/metabolism , Vasoplegia/metabolism , Aged , Down-Regulation , Female , Humans , Male , Middle Aged , Muscle, Smooth/pathology , Vasoplegia/pathology
7.
Cell Oncol (Dordr) ; 38(6): 485-91, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26392360

ABSTRACT

BACKGROUND: Cyclin-dependent kinase 10 (CDK10) has recently been identified as a tumor suppressor and, concordantly, its encoding gene has frequently been found to be inactivated in various human cancers. Here, we examined the expression status of CDK10 in a panel of primary human breast cancers and evaluated its correlation with clinicopathological parameters and clinical outcome. METHODS: Western blotting was used to assess CDK10 protein levels in 20 paired breast cancer tissues and adjacent noncancerous tissues. In addition, immunohistochemistry was performed in 128 formalin-fixed, paraffin-embedded tumor tissues. Associations of CDK10 expression with various clinicopathological parameters were evaluated and Kaplan-Meier survival analyses and Cox proportional hazards models were used to estimate its effect on patient survival. RESULTS: We found that CDK10 protein expression was markedly decreased in cancer tissues compared to adjacent noncancerous tissues. Immunohistochemistry revealed decreased CDK10 levels in 65/128 (50.8 %) of the primary breast cancer tissues tested. These decreased levels were found to be significantly associated with lymph node metastasis (P = 0.003), advanced tumor stage (P < 0.001) and unfavorable overall survival (P < 0.001). Furthermore, multivariate analyses indicated that CDK10 expression may serve as an independent prognostic factor for survival (P = 0.001). CONCLUSION: Down-regulated CDK10 expression frequently occurs in breast cancers and correlates with disease progression and poor survival. CDK10 may serve as a prognostic biomarker for breast cancer.


Subject(s)
Biomarkers, Tumor/analysis , Breast Neoplasms/pathology , Cyclin-Dependent Kinases/biosynthesis , Adult , Aged , Aged, 80 and over , Blotting, Western , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Cyclin-Dependent Kinases/analysis , Disease-Free Survival , Down-Regulation , Female , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Lymphatic Metastasis , Middle Aged , Prognosis , Proportional Hazards Models
8.
Technol Health Care ; 23 Suppl 2: S269-76, 2015.
Article in English | MEDLINE | ID: mdl-26410492

ABSTRACT

BACKGROUND: Medical equipment is closely related to personal health and safety, and this can be of concern to the equipment user. Furthermore, there is much competition among medical equipment manufacturers. Innovative design is the key to success for those enterprises. OBJECTIVE: The design of medical equipment usually covers vastly different domains of knowledge. The application of modern design methodology in medical equipment and technology invention is an urgent requirement. METHODS: TRIZ (Russian abbreviation of what can be translated as `theory of inventive problem solving') was born in Russia, which contain some problem-solving methods developed by patent analysis around the world, including Conflict Matrix, Substance Field Analysis, Standard Solution, Effects, etc. TRIZ is an inventive methodology for problems solving. RESULTS: As an Engineering example, infusion system is analyzed and re-designed by TRIZ. The innovative idea is generated to liberate the caretaker from the infusion bag watching out. The research in this paper shows the process of the application of TRIZ in medical device inventions. CONCLUSION: It is proved that TRIZ is an inventive methodology for problems solving and can be used widely in medical device development.


Subject(s)
Computer-Aided Design/instrumentation , Models, Theoretical , Problem Solving , Algorithms , Equipment Design , Humans , Infusions, Intravenous/instrumentation
9.
Tumour Biol ; 35(11): 11081-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25095979

ABSTRACT

The high mobility group-box 3 (HMGB3) protein belongs to the high mobility group box (HMG-box) subfamily, and recent studies have shown that HMGB3 is an oncogene for leukemia. HMGB3 is also expressed at a high level in the progression phase of breast and gastric cancer (GC). Using bioinformatic analyses, we found that HMGB3 is a potential target for miR-513b. However, the pathophysiological role of miR-513b and its relevance to the growth and development of GC have yet to be investigated. This study focuses on whether miR-513b acts as a tumor suppressor in GC. Compared with non-malignant adjacent tissues samples, qRT-PCR data showed significant downregulation of miR-513b in 74 GC tissue samples (P < 0.01). Furthermore, western blotting revealed that HMGB3 protein was overexpressed in tumor samples relative to matched, non-malignant adjacent tissues. Western blotting and qRT-PCR results showed that high expression of HMGB3 and low expression of miR-513b were both significantly associated with primary tumors, lymph node metastases, and the clinical stage (P < 0.01). MiR-513b was shown to not only inhibit the proliferation and migration of gastric cancer cells (MKN45 and SGC7901) in the CCK-8 and transwell assays, but also to promote cell apoptosis in a flow-cytometric apoptosis assay. In western blot and luciferase assays, HMGB3 was identified as a major target of miR-513b. Moreover, we also found that the expression of HMGB3 lacking in 3' UTR could abrogate the anti-migration and pro-apoptosis function of miR-513b. These findings suggest the importance of miR-513b targeting of HMGB3 in the regulation of growth, migration and apoptosis of GC, improve our understanding of the mechanisms of GC pathogenesis, and may promote the development of novel targeted therapies.


Subject(s)
Cell Movement , Cell Proliferation , HMGB3 Protein/metabolism , MicroRNAs/genetics , Stomach Neoplasms/pathology , Apoptosis , Blotting, Western , Female , Flow Cytometry , HMGB3 Protein/genetics , Humans , Lymphatic Metastasis , Male , Middle Aged , Neoplasm Staging , Prognosis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Tumor Cells, Cultured
11.
World J Gastroenterol ; 19(46): 8764-9, 2013 Dec 14.
Article in English | MEDLINE | ID: mdl-24379598

ABSTRACT

AIM: To evaluate the impact of Bmi-1 on cell senescence and metastasis of human gastric cancer cell line BGC823. METHODS: Two pairs of complementary small hairpin RNA (shRNA) oligonucleotides targeting the Bmi-1 gene were designed, synthesized, annealed and cloned into the pRNAT-U6.2 vector. After DNA sequencing to verify the correct insertion of the shRNA sequences, the recombinant plasmids were transfected into BGC823 cells. The expression of Bmi-1 mRNA and protein was examined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. The effects of Bmi-1 knockdown on cell senescence and metastasis were determined by the ß-Gal activity assay and Boyden chamber assay, respectively. RESULTS: The double-stranded oligonucleotide fragments of Bmi-1 short interfering RNA (siRNA) cloned into pRNAT-U6.2 vector conformed to the inserted sequence. RT-PCR and Western blotting indicated that the expression levels of Bmi-1 gene mRNA and protein were markedly decreased in transfected BGC823 cells with pRNAT-U6.2-si1104 and pRNAT-U6.2-si1356, especially in transfected BGC823 cells with pRNAT-U6.2-si1104, compared with two control groups (empty vector and blank group). In particular, Bmi-1 protein expression was almost completely abolished in cells transfected with the recombinant vector harboring shRNA targeting the sequence GGAGGAGGTGAATGATAAA (nt1104-1122). Compared with untransfected cells and cells transfected with the empty vector, the mean percentage of senescent cells increased and the number of cells passing through the Matrigel decreased in cells transfected with the recombinant vectors. CONCLUSION: Silencing Bmi-1 by RNA interference can increase the senescent cell rate and effectively reduce the metastasis of gastric cancer cells.


Subject(s)
Cell Movement , Cellular Senescence , Polycomb Repressive Complex 1/metabolism , RNA Interference , Stomach Neoplasms/metabolism , Cell Line, Tumor , Down-Regulation , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Invasiveness , Polycomb Repressive Complex 1/genetics , RNA, Messenger/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Transfection
13.
Am J Med Sci ; 343(2): 141-145, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22270267

ABSTRACT

INTRODUCTION: The aim of this study was to investigate whether combined epidermal growth factor (EGF) and gastrin can correct the hyperglycemia induced by streptozotocin (STZ) in rats and to determine the involvement of the transcription factor pancreatic and duodenal homeobox 1 (PDX1) in this process. METHODS: Rat diabetes was induced by intraperitoneal injection of STZ. The mRNA and protein levels of insulin and PDX1 were determined by real-time reverse transcriptase polymerase chain reaction and immunohistochemistry. Serum levels of C-peptide and insulin were analyzed using radioimmunoassay kits. RESULTS: The combined administration of EGF and gastrin efficiently reversed the hyperglycemia induced by STZ. Elevated insulin concentration was detected in diabetic rats treated with EGF plus gastrin. The authors also found that both insulin and PDX1 expression were reduced in STZ-treated rats. Interestingly, the combination treatment also significantly enhanced the mRNA levels of insulin and PDX1, and that of their protein products. CONCLUSIONS: Therapy with EGF plus gastrin corrected hyperglycemia and maintained insulin content in STZ-induced diabetic rats via up-regulation of PDX1 expression, suggesting that this combination treatment may provide a valuable approach for pancreatic islet neogenesis in vivo.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 1/drug therapy , Epidermal Growth Factor/administration & dosage , Gastrins/administration & dosage , Homeodomain Proteins/metabolism , Trans-Activators/metabolism , Animals , C-Peptide/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/physiopathology , Drug Combinations , Humans , Hyperglycemia/drug therapy , Hyperglycemia/physiopathology , Injections, Subcutaneous/veterinary , Insulin/blood , Islets of Langerhans/physiopathology , Male , RNA, Messenger/metabolism , Radioimmunoassay/veterinary , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction/veterinary , Reverse Transcriptase Polymerase Chain Reaction/veterinary
14.
Am J Med Sci ; 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21804373

ABSTRACT

INTRODUCTION:: The aim of this study was to investigate whether combined epidermal growth factor (EGF) and gastrin can correct the hyperglycemia induced by streptozotocin (STZ) in rats and to determine the involvement of the transcription factor pancreatic and duodenal homeobox 1 (PDX1) in this process. METHODS:: Rat diabetes was induced by intraperitoneal injection of STZ. The mRNA and protein levels of insulin and PDX1 were determined by real-time reverse transcriptase polymerase chain reaction and immunohistochemistry. Serum levels of C-peptide and insulin were analyzed using radioimmunoassay kits. RESULTS:: The combined administration of EGF and gastrin efficiently reversed the hyperglycemia induced by STZ. Elevated insulin concentration was detected in diabetic rats treated with EGF plus gastrin. The authors also found that both insulin and PDX1 expression were reduced in STZ-treated rats. Interestingly, the combination treatment also significantly enhanced the mRNA levels of insulin and PDX1, and that of their protein products. CONCLUSIONS:: Therapy with EGF plus gastrin corrected hyperglycemia and maintained insulin content in STZ-induced diabetic rats via up-regulation of PDX1 expression, suggesting that this combination treatment may provide a valuable approach for pancreatic islet neogenesis in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL