Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phytomedicine ; 128: 155313, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38520833

ABSTRACT

BACKGROUND: The occurrence of hyperlipidemia is significantly influenced by lipid synthesis, which is regulated by sterol regulatory element binding proteins (SREBPs), thus the development of drugs that inhibit lipid synthesis has become a popular treatment strategy for hyperlipidemia. Alisol B (ALB), a triterpenoid compound extracted from Alisma, has been reported to ameliorate no-nalcoholic steatohepatitis (NASH) and slow obesity. However, the effect of ALB on hyperlipidemia and mechanism are unclear. PURPOSE: To examine the therapeutic impact of ALB on hyperlipidemia whether it inhibits SREBPs to reduce lipid synthesis. STUDY DESIGN: HepG2, HL7702 cells, and C57BL/6J mice were used to explore the effect of ALB on hyperlipidemia and the molecular mechanism in vivo and in vitro. METHODS: Hyperlipidemia models were established using western diet (WD)-fed mice in vivo and oleic acid (OA)-induced hepatocytes in vitro. Western blot, real-time PCR and other biological methods verified that ALB regulated AMPK/mTOR/SREBPs to inhibit lipid synthesis. Cellular thermal shift assay (CETSA), molecular dynamics (MD), and ultrafiltration-LC/MS analysis were used to evaluate the binding of ALB to voltage-dependent anion channel protein-1 (VDAC1). RESULTS: ALB decreased TC, TG, LDL-c, and increased HDL-c in blood, thereby ameliorating liver damage. Gene set enrichment analysis (GSEA) indicated that ALB inhibited the biosynthesis of cholesterol and fatty acids. Consistently, ALB inhibited the protein expression of n-SREBPs and downstream genes. Mechanistically, the impact of ALB on SREBPs was dependent on the regulation of AMPK/mTOR, thereby impeding the transportation of SREBPs from endoplasmic reticulum (ER) to golgi apparatus (GA). Further investigations indicated that the activation of AMPK by ALB was independent on classical upstream CAMKK2 and LKB1. Instead, ALB resulted in a decrease in ATP levels and an increase in the ratios of ADP/ATP and AMP/ATP. CETSA, MD, and ultrafiltration-LC/MS analysis indicated that ALB interacted with VDAC1. Molecular docking revealed that ALB directly bound to VDAC1 by forming hydrogen bonds at the amino acid sites S196 and H184 in the ATP-binding region. Importantly, the thermal stabilization of ALB on VDAC1 was compromised when VDAC1 was mutated at S196 and H184, suggesting that these amino acids played a crucial role in the interaction. CONCLUSION: Our findings reveal that VDAC1 serves as the target of ALB, leading to the inhibition of lipid synthesis, presents potential target and candidate drugs for hyperlipidemia.


Subject(s)
AMP-Activated Protein Kinases , Cholestenones , Hyperlipidemias , TOR Serine-Threonine Kinases , Voltage-Dependent Anion Channel 1 , Animals , Humans , Male , Mice , Alisma/chemistry , AMP-Activated Protein Kinases/metabolism , Cholestenones/pharmacology , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Hyperlipidemias/drug therapy , Mice, Inbred C57BL , Molecular Docking Simulation , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Voltage-Dependent Anion Channel 1/metabolism
2.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5851-5862, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38114181

ABSTRACT

This study investigated the mechanism of Zexie Decoction(ZXD) in promoting white adipose tissue browning/brown adipose tissue activation based on the GLP-1R/cAMP/PKA/CREB pathway. A hyperlipidemia model was induced by a western diet(WD) in mice, and the mice were divided into a control group, a model group(WD), and low-, medium-, and high-dose ZXD groups. An adipogenesis model was induced in 3T3-L1 cells in vitro, and with forskolin(FSK) used as a positive control, low-, medium-, and high-dose ZXD groups were set up. Immunohistochemistry and immunofluorescence results showed that compared with the WD group, ZXD promoted the expression of UCP1 in white and brown adipose tissues, and also upregulated UCP1, CPT1ß, PPARα, and other genes in the cells. Western blot analysis showed a dose-dependent increase in the protein expression of PGC-1α, UCP1, and PPARα with ZXD treatment, indicating that ZXD could promote the white adipose tissue browning/brown adipose tissue activation. Hematoxylin-eosin(HE) staining results showed that after ZXD treatment, white and brown adipocytes were significantly reduced in size, and the mRNA expression of ATGL, HSL, MGL, and PLIN1 was significantly upregulated as compared with the results in the WD group. Oil red O staining and biochemical assays indicated that ZXD improved lipid accumulation and promoted lipolysis. Immunohistochemistry and immunofluorescence staining for p-CREB revealed that ZXD reversed the decreased expression of p-CREB caused by WD. In vitro intervention with ZXD increased the protein expression of CREB, p-CREB, and p-PKA substrate, and increased the mRNA level of CREB. ELISA detected an increase in intracellular cAMP concentration with ZXD treatment. Molecular docking analysis showed that multiple active components in Alismatis Rhizoma and Atractylodis Macrocephalae Rhizoma could form stable hydrogen bond interactions with GLP-1R. In conclusion, ZXD promotes white adipose tissue browning/brown adipose tissue activation both in vivo and in vitro, and its mechanism of action may be related to the GLP-1R/cAMP/PKA/CREB pathway.


Subject(s)
Adipose Tissue, Brown , PPAR alpha , Mice , Animals , Molecular Docking Simulation , PPAR alpha/metabolism , Adipose Tissue, White , RNA, Messenger/metabolism
3.
Zhongguo Zhong Yao Za Zhi ; 47(22): 6183-6190, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36471943

ABSTRACT

Taking lipophagy as the breakthrough point, we explored the mechanism of Zexie Decoction(ZXD) in improving lipid metabolism in the hepatocyte model induced by palmitic acid(PA) and in the animal model induced by high-fat diet(HFD) on the basis of protein kinase B(Akt)/transcription factor EB(TFEB) signaling pathway. Co-localization was carried out for the microtubule-associated protein light chain 3(LC3) plasmid labeled with green fluorescent protein(GFP) and lipid droplets(LDs), and immunofluorescence co-localization for liver LC3 of HFD mice and perilipin 2(PLIN2). The results showed that ZXD up-regulated the expression of LC3, reduced lipid accumulation in hepatocytes, and increased the co-localization of LC3 and LDs, thereby activating lipo-phagy. Western blot results confirmed that ZXD increased autophagy-related protein LC3Ⅱ/LC3Ⅰ transformation ratio and lysosome-associated membrane protein 2(LAMP2) in vivo and in vitro and promoted the degradation of sequestosome-1(SQSTM1/p62)(P<0.05). The results above jointly explained that ZXD regulated lipophagy. Furthermore, ZXD activated TFEB expression(P<0.05) and reversed the PA-and HFD-induced decrease of TFEB nuclear localization in hepatocytes(P<0.05). Meanwhile, ZXD activated liver TFEB to up-regulate the expression of the targets Lamp2, Lc3 B, Bcl2, and Atg5(P<0.05). Additionally, ZXD down-regulated the protein level of p-Akt upstream of TFEB in vivo and in vitro. In conclusion, ZXD may promote lipophagy by regulating the Akt/TFEB pathway.


Subject(s)
Autophagy , Drugs, Chinese Herbal , Hepatocytes , Proto-Oncogene Proteins c-akt , Animals , Mice , Autophagy/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Microtubule-Associated Proteins/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Drugs, Chinese Herbal/pharmacology
4.
Zhongguo Zhong Yao Za Zhi ; 47(2): 453-460, 2022 Jan.
Article in Chinese | MEDLINE | ID: mdl-35178989

ABSTRACT

The present study investigated the pharmaceutical effect and underlying mechanism of Zexie Decoction(ZXD) on nonalcoholic fatty liver disease(NAFLD) in vitro and in vivo via the LKB1/AMPK/PGC-1α pathway based on palmitic acid(PA)-induced lipid accumulation model and high-fat diet(HFD)-induced NAFLD model in mice. As revealed by the MTT assay, ZXD had no effect on HepG2 activity, but dose-dependently down-regulated alanine aminotransferase(ALT) and aspartate aminotransferase(AST) in the liver cell medium induced by PA, and decreased the plasma levels of ALT and AST, and total cholesterol(TC) and triglyceride(TG) levels in the liver. Nile red staining showed PA-induced intracellular lipid accumulation, significantly increased lipid accumulation of hepatocytes induced by PA, suggesting that the lipid accumulation model in vitro was properly induced. ZXD could effectively improve the lipid accumulation of hepatocytes induced by PA. Oil red O staining also demonstrated that ZXD improved the lipid accumulation in the liver of HFD mice. JC-1 staining for mitochondrial membrane potential indicated that ZXD effectively reversed the decrease in mitochondrial membrane potential caused by hepatocyte injury induced by PA, activated PGC-1α, and up-regulated the expression of its target genes, such as ACADS, CPT-1α, CPT-1ß, UCP-1, ACSL-1, and NRF-1. In addition, as revealed by the Western blot and immunohistochemistry, ZXD up-regulated the protein expression levels of LKB1, p-AMPK, p-ACC, and PGC-1α in vivo and in vitro. In conclusion, ZXD can improve NAFLD and its mechanism may be related to the regulation of the LKB1/AMPK/PGC-1α pathway.


Subject(s)
Non-alcoholic Fatty Liver Disease , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Alanine Transaminase/metabolism , Animals , Diet, High-Fat , Liver/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
5.
J Ethnopharmacol ; 290: 115101, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35151834

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Zexie Tang (ZXT), only two consists with Alismatis Rhizoma (AR) and Atractylodes macrocephala Rhizoma (AM), a classical Chinese medicine formula from Synopsis of the Golden Chamber with a history of 2000 years. Clinical observation in recent years has found that ZXT has excellent lipid-lowering effect. AIM OF THE STUDY: To explore the potential mechanism of ZXT ameliorates hyperlipidemia based on FKBP38/mTOR/SREBPs pathway. MATERIALS AND METHODS: WD-induced hyperlipidemia mice and oleic acid induced cell lipid accumulation model were used to investigate pharmacodynamic. The effect of ZXT on the transcriptional activity of SREBPs was detected by reporter gene assay. Proteins and downstream genes of mTOR/SREBPs pathway were detected in vivo and in vitro. Combined with network pharmacology and HPLC-Q-TOF/MS, the active ingredients were screened and identified. The interaction between active compounds of ZXT and FKBP38 protein were analyzed by docking analysis. RESULTS: ZXT decreased TC, TG and LDL-c levels in blood of WD-induced hyperlipidemia mouse model, and improved insulin resistance in vivo. ZXT also reduced TC, TG and lipid accumulation in cells line, and inhibited SREBPs luciferase activity, protein and its target genes expression such as FASN, HMGCR, etc. Meanwhile, ZXT inhibited protein expression levels of p-mTOR, p-S6K, etc in vitro and in vivo. Combined with network pharmacology and HPLC-Q-TOF/MS, 16 active ingredients were screened and identified. Docking results showed that active compounds of ZXT binding to FKBP38 and formed hydrogen bond. CONCLUSION: Our findings highlighted that ZXT ameliorates hyperlipidemia, in which FKBP/mTOR/SREBPs pathway might be the potential regulatory mechanism.


Subject(s)
Hyperlipidemias/pathology , Lipids/blood , Plant Extracts/pharmacology , Sterol Regulatory Element Binding Proteins/drug effects , TOR Serine-Threonine Kinases/drug effects , Tacrolimus Binding Proteins/drug effects , Alismatales , Animals , Atractylodes , Disease Models, Animal , Dose-Response Relationship, Drug , Male , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , Network Pharmacology
6.
Nat Prod Res ; 36(5): 1230-1235, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33401972

ABSTRACT

Two new sesquiterpenes, named selina-4(14),7,11-trien-9-ol (1) and selina-4(14),11-dien-7-ol (2), along with two known compounds were isolated from rhizomes of Atractylodes macrocephala Koidz. All structures were assigned on the basis of detailed spectroscopic analyses. The absolute configuration of 1 was established by TDDFT-ECD calculations. Compound 1 was found to moderately inhibit LSD1 activity with IC50 value of 34.0 µM. Compounds 1 and 4 exhibited a regulate effect on Keap1-Nrf2-ARE pathway.[Formula: see text].


Subject(s)
Atractylodes , Sesquiterpenes , Atractylodes/chemistry , Kelch-Like ECH-Associated Protein 1/analysis , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Rhizome/chemistry , Sesquiterpenes/chemistry
7.
J Nat Med ; 75(3): 540-552, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33590347

ABSTRACT

The accumulation of iron-dependent lipid peroxides is one of the important causes of NAFLD. The purpose of this study is to explore the effect of dehydroabietic acid (DA) on ferroptosis in nonalcoholic fatty liver disease (NAFLD) mice and its possible mechanisms. DA improved NAFLD and reduced triglycerides (TG), total cholesterol (TC), and lipid peroxidation level and inhibited ferroptosis in the liver of HFD-induced mice. DA binds with Keap1 to form 3 stable hydrogen bonds at VAL512 and LEU557 and increased nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response elemen (ARE) luciferase activity. DA promoted the expression downstream of Nrf2 such as heme oxygenase-1 (HO-1), glutathione (GSH) and its peroxidase 4 (GPX4), so as to eliminate the accumulation of reactive oxygen species (ROS) and reduce lipid peroxides malondialdehyde (MDA) in the liver. DA inhibited ferroptosis and increased the expression of key genes such as ferroptosis suppressor protein 1 (FSP1) in vitro and vivo. In all, DA may bind with Keap1, activate Nrf2-ARE, induce its target gene expression, inhibit ROS accumulation and lipid peroxidation, and reduce HFD-induced NAFLD.


Subject(s)
Abietanes/therapeutic use , Ferroptosis/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Signal Transduction/drug effects , Animals , Antioxidant Response Elements , Cholesterol/blood , Glutathione/metabolism , HEK293 Cells , Heme Oxygenase-1/metabolism , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Lipid Peroxidation/drug effects , Male , Malondialdehyde/metabolism , Membrane Proteins , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Reactive Oxygen Species/metabolism , S100 Calcium-Binding Protein A4/metabolism , Triglycerides/blood
8.
Biomed Pharmacother ; 127: 110155, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32413669

ABSTRACT

Dual-PPAR-α/γ agonist has the dual potentials to improve insulin resistance (IR) and hepatic steatosis associated with obesity. This study aimed to investigate whether dehydroabietic acid (DA), a naturally occurred compound, can bind to and activate both PPAR-γ and PPAR-α to ameliorate IR and hepatic steatosis in high-fat diet (HFD)-fed mice.. We found that DA formed stable hydrogen bonds with the ligand-binding domains of PPAR-γ and PPAR-α. DA treatment also promoted 3T3-L1 differentiation via PPAR-γ activation, and mitochondrial oxygen consumption in HL7702 cells via PPAR-α activation. In HFD-fed mice, DA treatment alleviated glucose intolerance and IR, and reduced hepatic steatosis, liver injury markers (ALT, AST), and lipid accumulation, and promoted mRNA expression of PPAR-γ and PPAR-α signaling elements involved in IR and lipid metabolism in vivo and in vitro, and inhibited mRNA expression of pro-inflammatory factors. Therefore, DA is a dual-PPAR-α/γ and PPAR-γ partial agonist, which can attenuate IR and hepatic steatosis induced by HFD-consumption in mice.


Subject(s)
Abietanes/pharmacology , Fatty Liver/drug therapy , PPAR alpha/agonists , PPAR gamma/agonists , 3T3-L1 Cells , Animals , Cell Line , Diet, High-Fat , Fatty Liver/physiopathology , Humans , Insulin Resistance , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Oxygen Consumption/drug effects
9.
J Nanosci Nanotechnol ; 9(11): 6439-52, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19908547

ABSTRACT

A core-shell multilayered composite microsphere with electric and magnetic features was designed and prepared on the basis of mutilayered fabrication. This kind of microspheres was obtained by introducing a rod-like conductive polyanilline (PANI) or its derivatives onto the surface of magnetic Fe3O4 nanoparticles with 4,4'-diphenylmethane diisocyanate as a anchor molecule. Subsequently, the Fe3O4/PANI or Fe3O4/aniline oligomers microspheres, as a secondary core, were covered with a cross-linked shell layer which was constructed by a dispersion polymerization process of methacrylic acid and vinyl pyrrolidone. The structure and morphologies were characterized by using a FTIR, XRD, UV-vis, SEM, TEM and TGA. The average diameter of Fe3O4 nanoparticles prepared is about 10.7 nm, and the PANI nanobars hold the size in the range of about 20.4-25.6 nm. The PANI nanobars are covalently assembled on the surface of Fe3O4 nanoparticles mainly in a mode of extended or horizontal arrangements through XRD and TEM results. The electromagnetic properties were examined based on different polymerization degrees and component ratios of PANI or its derivatives, showing characteristics of soft magnetic materials and controllable conductivity. The multilayer microspheres can be readily used to perform separation and magnetism guide, even electric and pH-modulated drug release in the light of swelling determination and a laser diffraction particle size analyzer, and are potentially of interest for drug targeting purpose.


Subject(s)
Aniline Compounds/chemistry , Crystallization/methods , Drug Carriers/chemistry , Ferric Compounds/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Electromagnetic Fields , Ferric Compounds/radiation effects , Macromolecular Substances/chemistry , Materials Testing , Microspheres , Molecular Conformation , Nanostructures/radiation effects , Particle Size , Surface Properties
10.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 24(3): 227-9, 2004 Mar.
Article in Chinese | MEDLINE | ID: mdl-15074091

ABSTRACT

OBJECTIVE: To explore the therapeutic effect of Pushen capsule (PSC) in treating primary hyperlipidemia. METHODS: Two hundred and forty patients with primary hyperlipidemia were randomly divided into two groups, the 120 patients in the treated group treated with PSC (4 capsules, tid) and the 120 patients in the control group treated with Zhibituo tablet (3 tablets, tid), and they were administered at the same time with Zhibituo placebo. The therapeutic course for both groups was 4 weeks. The therapeutic effect and the effects on blood lipids and viscosity were observed. RESULTS: The effective rate in the treated group was 76.3%, which was significantly higher than that in the control group (48.7%, P < 0.01). PSC showed a significant lowering effect on TC, TG and LDL-C and raising effect on HDL-C, and the effect in lowering TG was significantly better than that of Zhibituo (P < 0.01). PSC also showed a certain effect in decreasing whole blood viscosity of both high-sheared and low-sheared viscosity. CONCLUSION: Pushen capsule has promising blood lipid regulating effect in patients with hyperlipidemia, and some effects in lowering the blood viscosity.


Subject(s)
Hyperlipidemias/drug therapy , Hypolipidemic Agents/therapeutic use , Phytotherapy , Adult , Aged , Blood Viscosity , Capsules , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Double-Blind Method , Drugs, Chinese Herbal/therapeutic use , Female , Humans , Male , Middle Aged , Prospective Studies , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...