Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Genomic Med ; 8(10): e1415, 2020 10.
Article in English | MEDLINE | ID: mdl-32743916

ABSTRACT

BACKGROUND: Coronary atherosclerotic heart disease (CHD) is the most common cardiovascular disease and has become a leading cause of death globally. Various molecular typing methods are available for the diagnosis and treatment of tumors. However, molecular typing results are not routinely used for CHD. METHODS AND RESULTS: Aiming to uncover the underlying molecular features of different types of CHD, we screened the differentially expressed genes (DEGs) associated with CHD based on the Gene Expression Omnibus (GEO) data and expanded those with the NCBI-gene and OMIM databases to finally obtain 2021 DEGs. The weighted gene co-expression analysis (WGCNA) was performed on the candidate genes, and six distinctive WGCNA modules were identified, two of which were associated with CHD. Moreover, DEGs were mined as key genes for co-expression based on the module network relationship. Furthermore, the differentially expressed miRNAs in CHD and interactions in the database were mined in the GEO data set to build a multifactor regulatory network of key genes for co-expression. Based on the network, the CHD samples were further classified into five clusters and we defined FTH1, HCAR3, RGS2, S100A9, and TYROBP as the top genes of the five subgroups. Finally, the mRNA levels of FTH1, S100A9, and TYROBP were found to be significantly increased, while the expression of HCAR3 was decreased in the blood of CHD patients. We did not detect measurable levels of RGS2. CONCLUSION: The screened core clusters of genes may be a target for the diagnosis and treatment of CHD as a molecular typing module.


Subject(s)
Coronary Disease/genetics , Gene Regulatory Networks , Transcriptome , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Calgranulin B/genetics , Calgranulin B/metabolism , Coronary Disease/classification , Coronary Disease/metabolism , Ferritins/genetics , Ferritins/metabolism , Genomics/methods , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , RGS Proteins/genetics , RGS Proteins/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism
2.
Front Cell Dev Biol ; 8: 629397, 2020.
Article in English | MEDLINE | ID: mdl-33585469

ABSTRACT

Although mitochondrial fission has been reported to increase proliferative capacity and collagen production, it can also contribute to mitochondrial impairment, which is detrimental to cell survival. The aim of the present study was to investigate the role of mitochondrial fission in cardiac fibroblasts (CF) activation and explore the mechanisms involved in the maintenance of mitochondrial health under this condition. For this, changes in the levels of mitochondrial fission/fusion-related proteins were assessed in transforming growth factor beta 1 (TGF-ß1)-activated CF, whereas the role of mitochondrial fission during this process was also elucidated, as were the underlying mechanisms. The interaction between mitochondrial fission and mitophagy, the main defense mechanism against mitochondrial impairment, was also explored. The results showed that the mitochondria in TGF-ß1-treated CF were noticeably more fragmented than those of controls. The expression of several mitochondrial fission-related proteins was markedly upregulated, and the levels of fusion-related proteins were also altered, but to a lesser extent. Inhibiting mitochondrial fission resulted in a marked attenuation of TGF-ß1-induced CF activation. The TGF-ß1-induced increase in glycolysis was greatly suppressed in the presence of a mitochondrial inhibitor, whereas a glycolysis-specific antagonist exerted little additional antifibrotic effects. TGF-ß1 treatment increased cellular levels of reactive oxygen species (ROS) and triggered mitophagy, but this effect was reversed following the application of ROS scavengers. For the signals mediating mitophagy, the expression of Pink1, but not Bnip3l/Nix or Fundc1, exhibited the most significant changes, which could be counteracted by treatment with a mitochondrial fission inhibitor. Pink1 knockdown suppressed CF activation and mitochondrial fission, which was accompanied by increased CF apoptosis. In conclusion, mitochondrial fission resulted in increased glycolysis and played a crucial role in CF activation. Moreover, mitochondrial fission promoted reactive oxygen species (ROS) production, leading to mitophagy and the consequent degradation of the impaired mitochondria, thus promoting CF survival and maintaining their activation.

SELECTION OF CITATIONS
SEARCH DETAIL
...