Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38002970

ABSTRACT

The central oscillator is believed to be the key mechanism by which plants adapt to new environments. However, impacts from hybridization, the natural environment, and human selection have rarely been assessed on the oscillator of a crop. Here, from clearly identified alleles at oscillator loci (OsCCA1/LHY, OsPRR95, OsPRR37, OsPRR59, and OsPRR1) in ten diverse genomes of Oryza sativa, additional accessions, and functional analysis, we show that rice's oscillator was rebuilt primarily by new alleles from recombining parental sequences and subsequent 5' or/and coding mutations. New alleles may exhibit altered transcript levels from that of a parental allele and are transcribed variably among genetic backgrounds and natural environments in RIL lines. Plants carrying more expressed OsCCA1_a and less transcribed OsPRR1_e flower early in the paddy field. 5' mutations are instrumental in varied transcription, as shown by EMSA tests on one deletion at the 5' region of highly transcribed OsPRR1_a. Compared to relatively balanced mutations at oscillator loci of Arabidopsis thaliana, 5' mutations of OsPRR37 (and OsCCA1 to a less degree) were under negative selection while those of OsPRR1 alleles were under strong positive selection. Together, range expansion of Asian rice can be elucidated by human selection on OsPRR1 alleles via local flowering time-yield relationships.


Subject(s)
Arabidopsis , Oryza , Humans , Oryza/genetics , Alleles , Arabidopsis/genetics , Flowers/genetics
2.
Plant Biotechnol J ; 21(11): 2291-2306, 2023 11.
Article in English | MEDLINE | ID: mdl-37466912

ABSTRACT

Fruit ripening and disease resistance are two essential biological processes for quality formation and maintenance. DNA methylation, in the form of 5-methylcytosine (5mC), has been elucidated to modulate fruit ripening, but its role in regulating fruit disease resistance remains poorly understood. In this study, we show that mutation of SlDML2, the DNA demethylase gene essential for fruit ripening, affects multiple developmental processes of tomato besides fruit ripening, including seed germination, leaf length and width and flower branching. Intriguingly, loss of SlDML2 function decreased the resistance of tomato fruits against the necrotrophic fungal pathogen Botrytis cinerea. Comparative transcriptomic analysis revealed an obvious transcriptome reprogramming caused by SlDML2 mutation during B. cinerea invasion. Among the thousands of differentially expressed genes, SlßCA3 encoding a ß-carbonic anhydrase and SlFAD3 encoding a ω-3 fatty acid desaturase were demonstrated to be transcriptionally activated by SlDML2-mediated DNA demethylation and positively regulate tomato resistance to B. cinerea probably in the same genetic pathway with SlDML2. We further show that the pericarp tissue surrounding B. cinerea infection exhibited a delay in ripening with singnificant decrease in expression of ripening genes that are targeted by SlDML2 and increase in expression of SlßCA3 and SlFAD3. Taken together, our results uncover an essential layer of gene regulation mediated by DNA methylation upon B. cinerea infection and raise the possible that the DNA demethylase gene SlDML2, as a multifunctional gene, participates in modulating the trade-off between fruit ripening and disease resistance.


Subject(s)
Plant Proteins , Solanum lycopersicum , Disease Resistance/genetics , DNA/metabolism , DNA Methylation/genetics , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant/genetics , Plant Proteins/metabolism , Solanum lycopersicum/genetics
3.
Plant Biotechnol J ; 20(8): 1447-1455, 2022 08.
Article in English | MEDLINE | ID: mdl-35178842

ABSTRACT

Dynamic chemical modifications in eukaryotic messenger RNAs (mRNAs) constitute an essential layer of gene regulation, among which N6 -methyladenosine (m6 A) was unveiled to be the most abundant. m6 A functionally modulates important biological processes in various mammals and plants through the regulation of mRNA metabolism, mainly mRNA degradation and translation efficiency. Physiological functions of m6 A methylation are diversified and affected by intricate sequence contexts and m6 A machineries. A number of studies have dissected the functional roles and the underlying mechanisms of m6 A modifications in regulating plant development and stress responses. Recently, it was demonstrated that the human FTO-mediated plant m6 A removal caused dramatic yield increases in rice and potato, indicating that modulation of m6 A methylation could be an efficient strategy for crop improvement. In this review, we summarize the current progress concerning the m6 A-mediated regulation of crop development and stress responses, and provide an outlook on the potential application of m6 A epitranscriptome in the future improvement of crops.


Subject(s)
Adenosine , Biological Phenomena , Crops, Agricultural , Plants , Adenosine/analogs & derivatives , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Gene Expression Regulation , Humans , Methylation , Plants/genetics , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...