Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Planta Med ; 88(11): 881-890, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34359084

ABSTRACT

The root Rhynchosia volubilis was widely used for contraception in folk medicine, although its molecular mechanism on antifertility has not yet been revealed. In human sperm, it was reported that the cation channel of sperm, an indispensable cation channel for the fertilization process, could be regulated by various steroid-like compounds in plants. Interestingly, these nonphysiological ligands would also disturb the activation of the cation channel of sperm induced by progesterone. Therefore, this study aimed to explore whether the compounds in R. volubilis affect the physiological regulation of the cation channel of sperm. The bioguided isolation of the whole herb of R. volubilis has resulted in the novel discovery of five new prenylated isoflavonoids, rhynchones A - E (1:  - 5: ), a new natural product, 5'-O-methylphaseolinisoflavan (6: ) (1H and 13C NMR data, Supporting Information), together with twelve known compounds (7:  - 18: ). Their structures were established by extensive spectroscopic analyses and drawing a comparison with literature data, while their absolute configurations were determined by electronic circular dichroism calculations. The experiments of intracellular Ca2+ signals and patch clamping recordings showed that rhynchone A (1: ) significantly reduced cation channel of sperm activation by competing with progesterone. In conclusion, our findings indicat that rhynchone A might act as a contraceptive compound by impairing the activation of the cation channel of sperm and thus prevent fertilization.


Subject(s)
Progesterone , Sperm Motility , Calcium/metabolism , Calcium Channels/metabolism , Calcium Signaling , Humans , Male , Progesterone/analysis , Progesterone/metabolism , Progesterone/pharmacology , Seeds , Spermatozoa/chemistry , Spermatozoa/metabolism
2.
J Ethnopharmacol ; 281: 114534, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34419609

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hanchuan Zupa Granule (HCZP) is a classic prescription of Uyghur medicine, that is used for cough and abnormal mucinous asthma caused by a cold and "Nai-Zi-Lai". AIM OF THE STUDY: This study aimed to explore the possible molecular mechanism of HCZP in the treatment of asthma, using a network pharmacology method and in vivo experiments. MATERIALS AND METHODS: First, we conducted qualitative analysis of the chemical composition of HCZP as a basis for network pharmacology analysis. Using network pharmacology tools, the possible signaling pathways of HCZP in the treatment of asthma were obtained. An OVA-sensitized asthma model was established, and HCZP was continuously administered for one week. BALF was collected for cell counting, and serum and lung tissues were collected to analyze the expression of IgE, IL-4, IL-5, IL-13 and IFN-γ. Hematoxylin & eosin (H&E) staining was performed to assess the pathological changes in the lung tissues. Related protein expression in the lung tissues was analyzed by Western blotting for molecular mechanism exploration. RESULTS: Fifty-six chemical compounds were identified by UPLC Q-TOF MS. According to the network pharmacology results, 18 active compounds were identified among the 56 compounds, and 68 target genes of HCZP in the treatment of asthma were obtained. A total of 19 pathways were responsible for asthma (P < 0.05) according to KEGG pathway analysis. In vivo results showed that OVA sensitivity induced increased respiratory system resistance and inflammatory responses, which included inflammatory cell infiltration and high levels of IgE, IL-4, IL-5 and IL-13 in serum and lung tissues. Furthermore, OVA upregulated p-PI3K, p-JNK and p-p38 expression in lung tissues. Moreover, HCZP treatment significantly downregulated respiratory system resistance, and the expression of IL-4, IL-5, IL-13 and IgE, as well as significantly improved inflammatory cell infiltration in lung tissues. Moreover, the protein expression of p-PI3K, p-JNK and p-p38 in lung tissues decreased after HCZP treatment. CONCLUSION: HCZP significantly inhibited the OVA-induced inflammatory response via the PI3K-Akt and Fc epsilon RI signaling pathways.


Subject(s)
Asthma/chemically induced , Asthma/drug therapy , Medicine, Traditional , Animals , Asian People , Databases, Factual , Dexamethasone/therapeutic use , Female , Humans , Mice , Mice, Inbred BALB C , Ovalbumin/toxicity , Random Allocation , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...