Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 289(6): 3625-38, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24347166

ABSTRACT

GPR35 is a G protein-coupled receptor expressed in the immune, gastrointestinal, and nervous systems in gastric carcinomas and is implicated in heart failure and pain perception. We investigated residues in GPR35 responsible for ligand activation and the receptor structure in the active state. GPR35 contains numerous positively charged amino acids that face into the binding pocket that cluster in two distinct receptor regions, TMH3-4-5-6 and TMH1-2-7. Computer modeling implicated TMH3-4-5-6 for activation by the GPR35 agonists zaprinast and pamoic acid. Mutation results for the TMH1-2-7 region of GPR35 showed no change in ligand efficacies at the K1.32A, R2.65A, R7.33A, and K7.40A mutants. However, mutation of arginine residues in the TMH3-4-5-6 region (R4.60, R6.58, R3.36, R(164), and R(167) in the EC2 loop) had effects on signaling for one or both agonists tested. R4.60A resulted in a total ablation of agonist-induced activation in both the ß-arrestin trafficking and ERK1/2 activation assays. R6.58A increased the potency of zaprinast 30-fold in the pERK assay. The R(167)A mutant decreased the potency of pamoic acid in the ß-arrestin trafficking assay. The R(164)A and R(164)L mutants decreased potencies of both agonists. Similar trends for R6.58A and R(167)A were observed in calcium responses. Computer modeling showed that the R6.58A mutant has additional interactions with zaprinast. R3.36A did not express on the cell surface but was trapped in the cytoplasm. The lack of surface expression of R3.36A was rescued by a GPR35 antagonist, CID2745687. These results clearly show that R4.60, R(164), R(167), and R6.58 play crucial roles in the agonist initiated activation of GPR35.


Subject(s)
MAP Kinase Signaling System/drug effects , Molecular Dynamics Simulation , Phosphodiesterase Inhibitors/pharmacology , Purinones/pharmacology , Receptors, G-Protein-Coupled/metabolism , Amino Acid Substitution , Binding Sites , Cell Line , Humans , Ligands , MAP Kinase Signaling System/genetics , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/chemistry , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Mutation, Missense , Phosphodiesterase Inhibitors/chemistry , Protein Structure, Secondary , Purinones/chemistry , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics
2.
PLoS One ; 8(8): e71875, 2013.
Article in English | MEDLINE | ID: mdl-24015193

ABSTRACT

We examined the relationship between grip strength declines and muscle-tendon responses induced by long-term performance of a high-repetition, low-force (HRLF) reaching task in rats. We hypothesized that grip strength declines would correlate with inflammation, fibrosis and degradation in flexor digitorum muscles and tendons. Grip strength declined after training, and further in weeks 18 and 24, in reach limbs of HRLF rats. Flexor digitorum tissues of reach limbs showed low-grade increases in inflammatory cytokines: IL-1ß after training and in week 18, IL-1α in week 18, TNF-α and IL-6 after training and in week 24, and IL-10 in week 24, with greater increases in tendons than muscles. Similar cytokine increases were detected in serum with HRLF: IL-1α and IL-10 in week 18, and TNF-α and IL-6 in week 24. Grip strength correlated inversely with IL-6 in muscles, tendons and serum, and TNF-α in muscles and serum. Four fibrogenic proteins, TGFB1, CTGF, PDGFab and PDGFbb, and hydroxyproline, a marker of collagen synthesis, increased in serum in HRLF weeks 18 or 24, concomitant with epitendon thickening, increased muscle and tendon TGFB1 and CTGF. A collagenolytic gelatinase, MMP2, increased by week 18 in serum, tendons and muscles of HRLF rats. Grip strength correlated inversely with TGFB1 in muscles, tendons and serum; with CTGF-immunoreactive fibroblasts in tendons; and with MMP2 in tendons and serum. Thus, motor declines correlated with low-grade systemic and musculotendinous inflammation throughout task performance, and increased fibrogenic and degradative proteins with prolonged task performance. Serum TNF-α, IL-6, TGFB1, CTGF and MMP2 may serve as serum biomarkers of work-related musculoskeletal disorders, although further studies in humans are needed.


Subject(s)
Cumulative Trauma Disorders/blood , Forelimb/physiopathology , Interleukins/blood , Muscle Strength , Animals , Becaplermin , Connective Tissue Growth Factor/blood , Cumulative Trauma Disorders/immunology , Cumulative Trauma Disorders/physiopathology , Female , Forelimb/immunology , Inflammation Mediators/blood , Matrix Metalloproteinase 2/blood , Muscle, Skeletal/immunology , Muscle, Skeletal/metabolism , Proto-Oncogene Proteins c-sis/blood , Rats , Rats, Sprague-Dawley , Tendons/immunology , Tendons/metabolism , Transforming Growth Factor beta1/blood , Tumor Necrosis Factor-alpha/blood
3.
J Orthop Res ; 28(3): 298-307, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19743505

ABSTRACT

Upper extremity tendinopathies are associated with performance of forceful repetitive tasks. We used our rat model of repetitive strain injury to study changes induced in forelimb flexor digitorum tendons. Rats were trained to perform a high repetition high force (HRHF) handle-pulling task (12 reaches/min at 60 +/- 5% maximum pulling force [MPF]), or a low repetition negligible force (LRNF) reaching and food retrieval task (three reaches/min at 5 +/- 5% MPF), for 2 h/day in 30 min sessions, 3 days/week for 3-12 weeks. Forelimb grip strength was tested. Flexor digitorum tendons were examined at midtendon at the level of the carpal tunnel for interleukin (IL)-1beta, neutrophil, and macrophage influx, Substance P, connective tissue growth factor (CTGF), and periostin-like factor (PLF) immunoexpression, and histopathological changes. In HRHF rats, grip strength progressively decreased, while IL-1beta levels progressively increased in the flexor digitorum peritendon (para- and epitendon combined) and endotendon with task performance. Macrophage invasion was evident in week 6 and 12 HRHF peritendon but not endotendon. Also in HRHF rats, Substance P immunoexpression increased in week 12 peritendon as did CTGF- and PLF-immunopositive fibroblasts, the increased fibroblasts contributing greatly to peritendon thickening. Endotendon collagen disorganization was evident in week 12 HRHF tendons. LRNF tendons did not differ from controls, even at 12 weeks. Thus, we observed exposure-dependent changes in flexor digitorum tendons within the carpal tunnel, including increased inflammation, nociceptor-related neuropeptide immunoexpression, and fibrotic histopathology, changes associated with grip strength decline.


Subject(s)
Connective Tissue Growth Factor/metabolism , Cumulative Trauma Disorders/complications , Cumulative Trauma Disorders/metabolism , Forelimb , Interleukin-1beta/metabolism , Substance P/metabolism , Tendinopathy/etiology , Tendons/metabolism , Animals , Cumulative Trauma Disorders/pathology , Cumulative Trauma Disorders/physiopathology , Disease Progression , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Hand Strength , Immunohistochemistry , Macrophages/pathology , Rats , Rats, Sprague-Dawley , Tendons/pathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...