Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 660
Filter
1.
BMC Med ; 22(1): 223, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831366

ABSTRACT

BACKGROUND: The trajectory of attention-deficit hyperactivity disorder (ADHD) symptoms in children and adolescents, encompassing descending, stable, and ascending patterns, delineates their ADHD status as remission, persistence or late onset. However, the neural and genetic underpinnings governing the trajectory of ADHD remain inadequately elucidated. METHODS: In this study, we employed neuroimaging techniques, behavioral assessments, and genetic analyses on a cohort of 487 children aged 6-15 from the Children School Functions and Brain Development project at baseline and two follow-up tests for 1 year each (interval 1: 1.14 ± 0.32 years; interval 2: 1.14 ± 0.30 years). We applied a Latent class mixed model (LCMM) to identify the developmental trajectory of ADHD symptoms in children and adolescents, while investigating the neural correlates through gray matter volume (GMV) analysis and exploring the genetic underpinnings using polygenic risk scores (PRS). RESULTS: This study identified three distinct trajectories (ascending-high, stable-low, and descending-medium) of ADHD symptoms from childhood through adolescence. Utilizing the linear mixed-effects (LME) model, we discovered that attention hub regions served as the neural basis for these three developmental trajectories. These regions encompassed the left anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC), responsible for inhibitory control; the right inferior parietal lobule (IPL), which facilitated conscious focus on exogenous stimuli; and the bilateral middle frontal gyrus/precentral gyrus (MFG/PCG), accountable for regulating both dorsal and ventral attention networks while playing a crucial role in flexible modulation of endogenous and extrinsic attention. Furthermore, our findings revealed that individuals in the ascending-high group exhibited the highest PRS for ADHD, followed by those in the descending-medium group, with individuals in the stable-low group displaying the lowest PRS. Notably, both ascending-high and descending-medium groups had significantly higher PRS compared to the stable-low group. CONCLUSIONS: The developmental trajectory of ADHD symptoms in the general population throughout childhood and adolescence can be reliably classified into ascending-high, stable-low, and descending-medium groups. The bilateral MFG/PCG, left ACC/mPFC, and right IPL may serve as crucial brain regions involved in attention processing, potentially determining these trajectories. Furthermore, the ascending-high pattern of ADHD symptoms exhibited the highest PRS for ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Humans , Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/physiopathology , Child , Adolescent , Male , Female , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain/growth & development , Gray Matter/diagnostic imaging , Gray Matter/pathology , Neuroimaging , Cohort Studies
2.
Angew Chem Int Ed Engl ; : e202408016, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828671

ABSTRACT

Expanding the diversity of multi-macrocyclic nanocarbons, particularly those with all-benzene scaffolds, represents intriguing yet challenging synthetic tasks. Complementary to the existing synthetic approaches, here we report an efficient and modular post-functionalization strategy employing iridium-catalyzed C-H borylation of the highly strained meta-cycloparaphenylenes (mCPPs) and an mCPP-derived catenane. Based on the functionalized macrocyclic synthons, a number of novel all-benzene topological structures including linear and cyclic chains, polycatenane, and pretzelane have been successfully prepared and characterized, thereby showcasing the synthetic utility and potential of the post-functionalization strategy.

3.
J Anesth ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829406

ABSTRACT

PURPOSE: Thoracic epidural anesthesia (TEA) is often used for analgesia after thoracic surgery. Erector spinae plane block (ESPB) has been proposed to provide adequate analgesia. We hypothesized that ESPB would be noninferior to TEA as a part of multimodal analgesia in pediatric patients undergoing the Nuss procedure. METHODS: Patients aged 7-18 years and scheduled for the Nuss procedure were randomly allocated to receive bilateral single-shot ESPB or TEA and a multimodal analgesic regimen including parent-controlled intravenous analgesia (PCIA). At 6 h, 12 h, 18 h, and 24 h postoperatively, pain was evaluated using the numeric rating scale (NRS) and opioid consumption was assessed by counting the number of PCIA boluses. The joint primary outcomes were the average pain score and opioid consumption at 24 h after surgery. The secondary outcomes were the NRS scores and the number of opioid boluses administered at different postoperative time points, adverse events, and recovery quality. RESULTS: Three hundred patients underwent randomization, and 286 received ESPB (147 patients) or TEA (139 patients). At 24 h postoperatively, ESPB was noninferior to TEA in terms of the average NRS score (mean difference, - 0.1, 95% confidence interval [CI], - 0.3-0.1, margin = 1, P for noninferiority < 0.001) and the number of opioid boluses administered (mean difference, - 1.1, 95% CI, - 2.8-0.6, margin = 7, P for noninferiority < 0.001). Adverse events and patient recovery were comparable between groups. CONCLUSIONS: The results demonstrate that combined with a multimodal analgesia, ESPB provides noninferior analgesia compared to TEA with respect to pain score and opioid consumption among pediatric patients undergoing the Nuss procedure.

4.
Talanta ; 277: 126339, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38823321

ABSTRACT

Bisphenols and benzophenones are two typical kinds of endocrine-disrupting compounds (EDCs) that have been extensively detected in water environments, posing unanticipated risks to aquatic organisms and humans. It is urgent to develop efficient sample pretreatment methods for precise measurement of such EDCs. In this study, a magnetic and multi-shelled metal-organic framework derivative material has been prepared to extract and enrich trace bisphenols and benzophenones from water. Via a solvothermal reaction induced by sodium citrate followed by a carbonization treatment, a ZIF-67@ZIF-8 derived CoZn-magnetic hierarchical carbon (CoZn-MHC) material has been synthesized as a high-performance magnetic solid-phase extraction (MSPE) adsorbent. This adsorbent exhibited a good specific surface area (213.80 m2⋅g-1) and a saturation magnetization of 63.2 emu·g-1. After the optimization of several parameters (including adsorbent dosage, extraction time, pH, ionic strength, desorption solvent, and solvent volume), an efficient MSPE method for several EDCs (comprising bisphenols and benzophenones) was developed with a good linear range (R2 ≥ 0.990), a high sensitivity range (LODs: 0.793-5.37 ng⋅L-1), and good reusability (RSD ≤4.67 % in five consecutive tests). Furthermore, the material exhibited commendable resistance to matrix interference in natural water samples with the recovery rates of target compounds ranging from 74.8 % to 107 %. We envision that the preparation strategy of this functional metal-organic framework (MOF)-based adsorbent for EDCs may provide insights for relevant research in the future.

5.
Article in English | MEDLINE | ID: mdl-38865210

ABSTRACT

The repair of infected wounds is a complex physiopathologic process. Current studies on infected wound treatment have predominantly focused on infection treatment, while the factors related to delayed healing caused by vascular damage and immune imbalance are commonly overlooked. In this study, an extracellular matrix (ECM)-like dynamic and multifunctional hyaluronic acid (HA) hydrogel with antimicrobial, immunomodulatory, and angiogenic capabilities was designed as wound dressing for the treatment of infected skin wounds. The dynamic network in the hydrogel dressing was based on reversible metal-ligand coordination formed between sulfhydryl groups and bioactive metal ions. In our design, antibacterial silver and immunomodulatory zinc ions were employed to coordinate with sulfhydrylated HA and a vasculogenic peptide. In addition to the desired bioactivities for infected wounds, the hydrogel could also exhibit self-healing and injectable abilities. Animal experiments with infected skin wound models indicated that the hydrogel dressings enabled minimally invasive injection and seamless skin wound covering and then facilitated wound healing by efficient bacterial killing, continuous inflammation inhibition, and improved blood vessel formation. In conclusion, the metal ion-coordinated hydrogels with wound-infection-desired bioactivities and ECM-like dynamic structures represent a class of tissue bionic wound dressings for the treatment of infected and chronic inflammation wounds.

6.
Adv Healthc Mater ; : e2302755, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733291

ABSTRACT

More than 3 years into the global pandemic, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a significant threat to public health. Immunities acquired from infection or current vaccines fail to provide long term protection against subsequent infections, mainly due to their fast-waning nature and the emergence of variants of concerns (VOCs) such as Omicron. To overcome these limitations, SARS-CoV-2 Spike protein receptor binding domain (RBD)-based epitopes are investigated as conjugates with a powerful carrier, the mutant bacteriophage Qß (mQß). The epitope design is critical to eliciting potent antibody responses with the full length RBD being superior to peptide and glycopeptide antigens. The full length RBD conjugated with mQß activates both humoral and cellular immune systems in vivo, inducing broad spectrum, persistent, and comprehensive immune responses effective against multiple VOCs including Delta and Omicron variants, rendering it a promising vaccine candidate.

7.
Vaccine ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38796326

ABSTRACT

We conducted a phase I, randomized, double-blind, placebo-controlled trial including healthy adults in Sui County, Henan Province, China. Ninety-six adults were randomly assigned to one of three groups (high-dose, medium-dose, and low-dose) at a 3:1 ratio to receive one vaccine dose or placebo. Adverse events up to 28 days after each dose and serious adverse events up to 6 months after all doses were reported. Geometric mean titers and seroconversion rates were measured for anti-rotavirus neutralizing antibodies using microneutralization tests. The rates of total adverse events in the placebo group, low-dose group, medium-dose group, and high-dose group were 29.17 % (12.62 %-51.09 %), 12.50 % (2.66 %-32.36 %), 50.00 % (29.12 %-70.88 %), and 41.67 % (22.11 %-63.36 %), respectively, with no significant difference in the experimental groups compared with the placebo group. The results of the neutralizing antibody assay showed that in the adult group, the neutralizing antibody geometric mean titer at 28 days after full immunization in the low-dose group was 583.01 (95 % confidence interval [CI]: 447.12-760.20), that in the medium-dose group was 899.34 (95 % CI: 601.73-1344.14), and that in the high-dose group was 1055.24 (95 % CI: 876.28-1270.75). The GMT of serum-specific IgG at 28 days after full immunization in the low-dose group was 3444.26 (95 % CI: 2292.35-5175.02), that in the medium-dose group was 6888.55 (95 % CI: 4426.67-10719.6), and that in the high-dose group was 7511.99 (95 % CI: 3988.27-14149.0). The GMT of serum-specific IgA at 28 days after full immunization in the low-dose group was 2332.14 (95 % CI: 1538.82-3534.45), that in the medium-dose group was 4800.98 (95 % CI: 2986.64-7717.50), and that in the high-dose group was 3204.30 (95 % CI: 2175.66-4719.27). In terms of safety, adverse events were mainly Grades 1 and 2, indicating that the safety of the vaccine is within the acceptable range in the healthy adult population. Considering the GMT and positive transfer rate of neutralizing antibodies for the main immunogenicity endpoints in the experimental groups, it was initially observed that the high-dose group had higher levels of neutralizing antibodies than the medium- and low-dose groups in adults aged 18-49 years. This novel inactivated rotavirus vaccine was generally well-tolerated in adults, and the vaccine was immunogenic in adults (ClinicalTrials.gov number, NCT04626856).

8.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167269, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38810919

ABSTRACT

Hyperalgesia is typified by reduced pain thresholds and heightened responses to painful stimuli, with a notable prevalence in menopausal women, but the underlying mechanisms are far from understood. ß-Aminoisobutyric acid (BAIBA), a product of valine and thymine catabolism, has been reported to be a novel ligand of the Mas-related G protein coupled receptor D (MrgprD), which mediates pain and hyperalgesia. Here, we established a hyperalgesia model in 8-week-old female mice through ovariectomy (OVX). A significant increase in BAIBA plasma level was observed and was associated with decline of mechanical withdrawal threshold, thermal and cold withdrawal latency in mice after 6 weeks of OVX surgery. Increased expression of MrgprD in dorsal root ganglion (DRG) was shown in OVX mice compared to Sham mice. Interestingly, chronic loading with BAIBA not only exacerbated hyperalgesia in OVX mice, but also induced hyperalgesia in gonadally intact female mice. BAIBA supplementation also upregulated the MrgprD expression in DRG of both OVX and intact female mice, and enhanced the excitability of DRG neurons in vitro. Knockout of MrgprD markedly suppressed the effects of BAIBA on hyperalgesia and excitability of DRG neurons. Collectively, our data suggest the involvement of BAIBA in the development of hyperalgesia via MrgprD-dependent pathway, and illuminate the mechanisms underlying hyperalgesia in menopausal women.

9.
Nat Commun ; 15(1): 4588, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816433

ABSTRACT

Lycibarbarspermidines are unusual phenolamide glycosides characterized by a dicaffeoylspermidine core with multiple glycosyl substitutions, and serve as a major class of bioactive ingredients in the wolfberry. So far, little is known about the enzymatic basis of the glycosylation of phenolamides including dicaffeoylspermidine. Here, we identify five lycibarbarspermidine glycosyltransferases, LbUGT1-5, which are the first phenolamide-type glycosyltransferases and catalyze regioselective glycosylation of dicaffeoylspermidines to form structurally diverse lycibarbarspermidines in wolfberry. Notably, LbUGT3 acts as a distinctive enzyme that catalyzes a tandem sugar transfer to the ortho-dihydroxy group on the caffeoyl moiety to form the unusual ortho-diglucosylated product, while LbUGT1 accurately discriminates caffeoyl and dihydrocaffeoyl groups to catalyze a site-selective sugar transfer. Crystal structure analysis of the complexes of LbUGT1 and LbUGT3 with UDP, combined with molecular dynamics simulations, revealed the structural basis of the difference in glycosylation selectivity between LbUGT1 and LbUGT3. Site-directed mutagenesis illuminates a conserved tyrosine residue (Y389 in LbUGT1 and Y390 in LbUGT3) in PSPG box that plays a crucial role in regulating the regioselectivity of LbUGT1 and LbUGT3. Our study thus sheds light on the enzymatic underpinnings of the chemical diversity of lycibarbarspermidines in wolfberry, and expands the repertoire of glycosyltransferases in nature.


Subject(s)
Glycosyltransferases , Lycium , Glycosyltransferases/metabolism , Glycosyltransferases/chemistry , Glycosyltransferases/genetics , Glycosylation , Lycium/enzymology , Lycium/metabolism , Lycium/chemistry , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/chemistry , Glycosides/metabolism , Glycosides/chemistry , Crystallography, X-Ray , Piperidines/metabolism , Piperidines/chemistry , Substrate Specificity
10.
PLoS Genet ; 20(5): e1011282, 2024 May.
Article in English | MEDLINE | ID: mdl-38768261

ABSTRACT

Light as a source of information regulates morphological and physiological processes of fungi, including development, primary and secondary metabolism, or the circadian rhythm. Light signaling in fungi depends on photoreceptors and downstream components that amplify the signal to govern the expression of an array of genes. Here, we investigated the effects of red and far-red light in the mycoparasite Trichoderma guizhouense on its mycoparasitic potential. We show that the invasion strategy of T. guizhouense depends on the attacked species and that red and far-red light increased aerial hyphal growth and led to faster overgrowth or invasion of the colonies. Molecular experiments and transcriptome analyses revealed that red and far-red light are sensed by phytochrome FPH1 and further transmitted by the downstream MAPK HOG pathway and the bZIP transcription factor ATF1. Overexpression of the red- and far-red light-induced fluffy gene fluG in the dark resulted in abundant aerial hyphae formation and thereby improvement of its antagonistic ability against phytopathogenic fungi. Hence, light-induced fluG expression is important for the mycoparasitic interaction. The increased aggressiveness of fluG-overexpressing strains was phenocopied by four random mutants obtained after UV mutagenesis. Therefore, aerial hyphae formation appears to be a trait for the antagonistic potential of T. guizhouense.


Subject(s)
Gene Expression Regulation, Fungal , Hyphae , Light , Phytochrome , Trichoderma , Hyphae/growth & development , Hyphae/genetics , Phytochrome/metabolism , Phytochrome/genetics , Trichoderma/genetics , Trichoderma/physiology , Trichoderma/growth & development , Plant Diseases/microbiology , Fungal Proteins/metabolism , Fungal Proteins/genetics , Ascomycota/genetics , Ascomycota/growth & development , Rhizoctonia/growth & development , Red Light
11.
Nat Genet ; 56(6): 1110-1120, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811844

ABSTRACT

Genome-wide association studies of brain imaging phenotypes are mainly performed in European populations, but other populations are severely under-represented. Here, we conducted Chinese-alone and cross-ancestry genome-wide association studies of 3,414 brain imaging phenotypes in 7,058 Chinese Han and 33,224 white British participants. We identified 38 new associations in Chinese-alone analyses and 486 additional new associations in cross-ancestry meta-analyses at P < 1.46 × 10-11 for discovery and P < 0.05 for replication. We pooled significant autosomal associations identified by single- or cross-ancestry analyses into 6,443 independent associations, which showed uneven distribution in the genome and the phenotype subgroups. We further divided them into 44 associations with different effect sizes and 3,557 associations with similar effect sizes between ancestries. Loci of these associations were shared with 15 brain-related non-imaging traits including cognition and neuropsychiatric disorders. Our results provide a valuable catalog of genetic associations for brain imaging phenotypes in more diverse populations.


Subject(s)
Brain , Genome-Wide Association Study , Neuroimaging , Phenotype , Polymorphism, Single Nucleotide , White People , Humans , Brain/diagnostic imaging , White People/genetics , Asian People/genetics , Male , Female , Magnetic Resonance Imaging , Adult
12.
J Vasc Interv Radiol ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38723863

ABSTRACT

PURPOSE: To examine the relationship between hyperdense artery sign (HAS)/susceptibility vessel sign (SVS) and thrombus composition and evaluate the effect of HAS/SVS status on the association between first-line thrombectomy techniques and outcomes in patients with acute anterior circulation large vessel occlusion (LVO). MATERIALS AND METHODS: From January 2018 to June 2021, 103 consecutive patients with acute anterior circulation LVO (75 [63.1%] men; median age, 66 years) who underwent thrombectomy and for whom the removed clot was available for histological analyses were retrospectively reviewed. The presence of HAS and SVS was assessed on unenhanced computed tomography (CT) and susceptibility-weighted imaging, respectively. Association of first-line thrombectomy techniques (stent retriever [SR] combined with contact aspiration [CA] vs CA alone) with outcomes was assessed according to HAS/SVS status. RESULTS: Among the included patients, 55 (53.4%) were HAS/SVS-negative, and 69 (67.0%) underwent first-line SR + CA. Higher relative densities of fibrin/platelets (0.56 vs 0.51; P < .001) and lower relative densities of erythrocytes (0.32 vs 0.42; P < .001) were observed in HAS/SVS-negative patients compared with HAS/SVS-positive patients. First-line SR + CA was associated with reduced odds of distal embolization (adjusted odds ratio, 0.18; 95% CI, 0.04-0.83; P = .027) and a more favorable 90-day functional outcome (adjusted odds ratio, 5.29; 95% CI, 1.06-26.34; P = .042) in HAS/SVS-negative patients and a longer recanalization time (53 vs 25 minutes; P = .025) and higher risk of subarachnoid hemorrhage (24.2% vs 0%; P = .044) in HAS/SVS-positive patients. CONCLUSIONS: Absence of HAS/SVS may indicate a higher density of fibrin/platelets in the thrombus, and first-line SR + CA yielded superior functional outcomes than CA alone in patients with acute LVO without HAS/SVS.

13.
Plant Physiol Biochem ; 212: 108727, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38761548

ABSTRACT

Phosphatidylserine (PS) is an important lipid signaling required for plant growth regulation and salt stress adaptation. However, how PS positively regulate plant salt tolerance is still largely unknown. In this study, IbPSS1-overexpressed sweetpotato plants that exhibited overproduction of PS was employed to explore the mechanisms underlying the PS stimulation of plant salt tolerance. The results revealed that the IbPSS1-overexpressed sweetpotato accumulated less Na+ in the stem and leaf tissues compared with the wild type plants. Proteomic profile of roots showed that lignin synthesis-related proteins over-accumulated in IbPSS1-overexpressed sweetpotato. Correspondingly, the lignin content was enhanced but the influx of Na + into the stele was significantly blocked in IbPSS1-overexpressed sweetpotato. The results further revealed that ethylene synthesis and signaling related genes were upregulated in IbPSS1-overexpressed sweetpotato. Ethylene imaging experiment revealed the enhancement of ethylene mainly localized in the root stele. Inhibition of ethylene synthesis completely reversed the PS-overproduction induced lignin synthesis and Na+ influx pattern in stele tissues. Taken together, our findings demonstrate a mechanism by which PS regulates ethylene signaling and lignin synthesis in the root stele, thus helping sweetpotato plants to block the loading of Na+ into the xylem and to minimize the accumulation of Na+ in the shoots.

14.
Plant J ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743909

ABSTRACT

Low temperature (LT) greatly restricts grain filling in maize (Zea mays L.), but the relevant molecular mechanisms are not fully understood. To better understand the effect of LT on grain development, 17 hybrids were subjected to LT stress in field trials over 3 years, and two hybrids of them with contrasting LT responses were exposed to 30/20°C and 20/10°C for 7 days during grain filling in a greenhouse. At LT, thousand-kernel weight declined, especially in LT-sensitive hybrid FM985, while grain-filling rate was on average about 48% higher in LT-tolerant hybrid DK159 than FM985. LT reduced starch synthesis in kernel mainly by suppression of transcript levels and enzyme activities for sucrose synthase and hexokinase. Brassinolide (BR) was abundant in DK159 kernel, and genes involved in BR and cytokinin signals were inducible by stress. LT downregulated the genes in light-harvesting complex and photosystem I/II subunits, accompanied by reduced photosynthetic rate and Fv/Fm in ear leaf. The LT-tolerant hybrid could maintain a high soluble sugar content and fast interconversion between sucrose and hexose in the stem internode and cob, improving assimilate allocation to kernel at LT stress and paving the way for simultaneous growth and LT stress responses.

15.
Biol Psychiatry ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38718879

ABSTRACT

BACKGROUND: The right MFG has been proposed as a convergence site for the DAN and VAN, regulating both networks and enabling flexible modulation of attention. However, it is unclear if the connections between the right MFG and these networks can predict changes in ADHD symptoms. METHODS: This study used data from the Children School Functions and Brain Development project (n = 713, 56.2% boys). Resting-state fMRI was employed to analyze the connections of the right MFG with DAN/VAN, connectome-based predictive modeling was applied for longitudinal prediction, and ADHD PRS were used for genetic analysis. RESULTS: The ADHD symptoms were associated with the connections between the right MFG and DAN subregion, including the FEF, as well as the VAN subregions, namely the IPL and IFG. Furthermore, these connections of the right MFG with FEF, IPL, and IFG could significantly predict changes in ADHD symptoms over one year and mediate the prediction of ADHD symptom changes by PRS for ADHD. Finally, the validation samples confirmed that the functional connectivity between the right MFG and FEF/IPL in ADHD patients was significantly weaker than that in the typically developing controls, and this difference disappeared after medication. CONCLUSIONS: The connection of right MFG with DAN and VAN can serve as a predictive indicator for changes in ADHD symptoms over the following year, while also mediating the prediction of ADHD symptom changes by PRS for ADHD. These findings hold promise as potential biomarkers for early identification of children at risk of developing ADHD.

16.
Natl Sci Rev ; 11(5): nwae091, 2024 May.
Article in English | MEDLINE | ID: mdl-38577671

ABSTRACT

Relaxation processes are crucial for understanding the structural rearrangements of liquids and amorphous materials. However, the overarching principle that governs these processes across vastly different materials remains an open question. Substantial analysis has been carried out based on the motions of individual particles. Here, as an alternative, we propose viewing the global configuration as a single entity. We introduce a global order parameter, namely the inherent structure minimal displacement (IS Dmin), to quantify the variability of configurations by a pattern-matching technique. Through atomic simulations of seven model glass-forming liquids, we unify the influences of temperature, pressure and perturbation time on the relaxation dissipation, via a scaling law between the mechanical damping factor and IS Dmin. Fundamentally, this scaling reflects the curvature of the local potential energy landscape. Our findings uncover a universal origin of glassy relaxation and offer an alternative approach to studying disordered systems.

17.
Physiol Plant ; 176(2): e14282, 2024.
Article in English | MEDLINE | ID: mdl-38591354

ABSTRACT

In nature, drought and salt stresses often occur simultaneously and affect plant growth at multiple levels. However, the mechanisms underlying plant responses to drought and salt stresses and their interactions are still not fully understood. We performed a meta-analysis to compare the effects of drought, salt, and combined stresses on plant physiological, biochemical, morphological and growth traits, analyze the different responses of C3 and C4 plants, as well as halophytes and non-halophytes, and identify the interactive effects on plants. There were numerous similarities in plant responses to drought, salt, and combined stresses. C4 plants had a more effective antioxidant defense system, and could better maintain above-ground growth. Halophytes could better maintain photosynthetic rate (Pn) and relative water content (RWC), and reduce growth as an adaptation strategy. The responses of most traits (Pn, RWC, chlorophyll content, soluble sugar content, H2O2 content, plant dry weight, etc.) to combined stress were less-than-additive, indicating cross-resistance rather than cross-sensitivity of plants to drought and salt stresses. These results are important to improve our understanding of drought and salt cross-resistance mechanisms and further induce resistance or screen-resistant varieties under stress combination.


Subject(s)
Droughts , Hydrogen Peroxide , Hydrogen Peroxide/pharmacology , Sodium Chloride/pharmacology , Plants , Water , Salt Stress , Stress, Physiological
18.
Analyst ; 149(10): 2826-2832, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38591153

ABSTRACT

The diffusion dynamics of small molecules into polymer entities is crucial for driving their morphology and function, which can be applied to research fields such as optical identification, medical implantation and intelligent sensing platforms. Herein, we demonstrate a nondestructive bright-field imaging strategy to monitor and control the morphology of polymer microspheres by varying the interfacial interaction and diffusion in a penetrant bath. The nanoscale interface movement of single polymer microspheres was tracked and converted into the diameter variation during the swelling event with sub-pixel accuracy, which is consistent with the calculation using Li-Tanaka's kinetic equations. More interestingly, the solvent diffusion dynamics along different directions of one particle are heterogeneous, indicating the non-uniform internal structure of a soft confined assembly. The swelling characteristics of single polymer microspheres can be quantified by this simple imaging strategy, and the transient intermediate swelling states are captured. To model the lifetime and stabilization times of microplastic entities, solvent selectivity and thermodynamic regulation were introduced to obtain the activation energy down to the single micro-entity level. This optical methodology shows capability for decoding the complex diffusion mechanism in polymer entities and provides guidance for the design of drug delivery systems, sensor platforms, and optical responsive materials.

19.
Curr Microbiol ; 81(6): 138, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609554

ABSTRACT

A Gram-stain-negative bacterium with a rod-to-ovoid shape, named strain M216T, was isolated from sand sediment from the coastal intertidal zone of Huludao, Liaoning Province, China. Growth was observed at 8-40 °C (optimal, 30 °C), pH 5.5-9.5 (optimal, pH 6.5) and 0.5-14.0% (w/v) NaCl (optimal, 6%). Strain M216T possessed ubiquinone-9 as its sole respiratory quinone and phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, one unidentified aminophosphoglycolipid, one unidentified aminophospholipid, two unidentified phosphoglycolipids, three unidentified phospholipids and three unidentified glycolipids as the main polar lipids. C12:0, C16:0, C12:0 3-OH, C16:1 ω9c, C18:1 ω9c and summed features 3 (C16:1 ω7c and/or C16:1 ω6c) were the major fatty acids (> 5%). The 16S rRNA gene sequence of strain M216T exhibited high similarity to those of 'Marinobacter arenosus' CAU 1620T and Marinobacter adhaerens HP15T (99.3% and 98.5%, respectively) and less than 98.5% similarity to those of the other type strains. The ANI and dDDH values between the strain M216T and 'Marinobacter arenosus' CAU 1620T were 87.4% and 33.3%, respectively; these values were the highest among the other type strains but lower than the species threshold. The G+C content of strain M216T was 58.3%. Genomic analysis revealed that strain M216T harbors the major CAZymes of GH13, GH23, GH73, and PL5, which are responsible for polysaccharide degradation and the potential ability to reduce nitrate to ammonia. Through phenotypic, genotypic, and chemotaxonomic analyses, we proposed the name Marinobacter albus sp. nov., a novel species in the genus Marinobacter, with its type strain M216T (= MCCC 1K08600T = KCTC 82894T).


Subject(s)
Marinobacter , Marinobacter/genetics , RNA, Ribosomal, 16S/genetics , Sand , Ammonia , China
20.
Int J Biol Macromol ; 267(Pt 1): 131562, 2024 May.
Article in English | MEDLINE | ID: mdl-38626832

ABSTRACT

Angiogenesis is pivotal for osteogenesis during bone regeneration. A hydrogel that promotes both angiogenesis and osteogenesis is essential in bone tissue engineering. However, creating scaffolds with the ideal balance of biodegradability, osteogenic, and angiogenic properties poses a challenge. Thymosin beta 10 (TMSB10), known for its dual role in angiogenesis and osteogenesis differentiation, faces limitations due to protein activity preservation. To tackle this issue, ZIF-8 was engineered as a carrier for TMSB10 (TMSB10@ZIF-8), and subsequently integrated into the self-assembled sericin hydrogel. The efficacy of the composite hydrogel in bone repair was assessed using a rat cranial defect model. Characterization of the nanocomposites confirmed the successful synthesis of TMSB10@ZIF-8, with a TMSB10 encapsulation efficiency of 88.21 %. The sustained release of TMSB10 from TMSB10@ZIF-8 has significantly enhanced tube formation in human umbilical vein endothelial cells (HUVECs) in vitro and promoted angiogenesis in the chicken chorioallantoic membrane (CAM) model in vivo. It has markedly improved the osteogenic differentiation ability of MC 3 T3-E1 cells in vitro. 8 weeks post-implantation, the TMSB10@ZIF-8/ Sericin hydrogel group exhibited significant bone healing (86.77 ± 8.91 %), outperforming controls. Thus, the TMSB10@ZIF-8/Sericin hydrogel, leveraging ZIF-8 for TMSB10 delivery, emerges as a promising bone regeneration scaffold with substantial clinical application potential.


Subject(s)
Bone Regeneration , Human Umbilical Vein Endothelial Cells , Hydrogels , Neovascularization, Physiologic , Osteogenesis , Sericins , Thymosin , Bone Regeneration/drug effects , Osteogenesis/drug effects , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Neovascularization, Physiologic/drug effects , Humans , Rats , Human Umbilical Vein Endothelial Cells/drug effects , Thymosin/pharmacology , Thymosin/chemistry , Sericins/chemistry , Sericins/pharmacology , Cell Differentiation/drug effects , Mice , Rats, Sprague-Dawley , Male , Angiogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...