Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 7(11): 200676, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33391786

ABSTRACT

For improving the effective concentration of berberine hydrochloride (BH) in the gastrointestinal tract, a series of pH-responsive hydrogel beads were prepared based on carboxymethylstarch-g-poly (acrylic acid)/palygorskite/starch/sodium alginate (CMS-g-PAA/PGS/ST/SA) in the present work. The developed hydrogel beads were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TG). Effect of palygorskite (PGS) content on the swelling properties of hydrogel beads and BH cumulative release were discussed. The pH responsiveness of hydrogel beads was also investigated in different media. Results illustrated that swelling of hydrogel beads and BH cumulative release from hydrogel beads were obviously affected by PGS content. The swelling ratio and BH cumulative release of composite hydrogel beads remarkably slowed down with PGS content increasing in the range from 10 to 40 wt%. The composite hydrogel beads were pH-responsive. At pH 7.4, the swelling ratio and BH cumulative release from composite hydrogel beads were the fastest among the dissolution media of pH 1.2, pH 6.8 and pH 7.4. The BH cumulative release from hydrogel beads was related to the swelling and relaxation of composite hydrogel beads and could be fitted better by the Higuchi model. The obtained composite hydrogel beads could be potentially used for the development of BH pharmaceutical dosage forms.

2.
Sensors (Basel) ; 18(11)2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30445786

ABSTRACT

A NiFe alloy nanoparticle/graphene oxide hybrid (NiFe/GO) was prepared for electrochemical glucose sensing. The as-prepared NiFe/GO hybrid was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results indicated that NiFe alloy nanoparticles can be successfully deposited on GO. The electrochemical glucose sensing performance of the as-prepared NiFe/GO hybrid was studied by cyclic voltammetry and amperometric measurement. Results showed that the NiFe/GO-modified glassy carbon electrode had sensitivity of 173 µA mM-1 cm-2 for glucose sensing with a linear range up to 5 mM, which is superior to that of commonly used Ni nanoparticles. Furthermore, high selectivity for glucose detection could be achieved by the NiFe/GO hybrid. All the results demonstrated that the NiFe/GO hybrid has promise for application in electrochemical glucose sensing.

3.
R Soc Open Sci ; 5(5): 180007, 2018 May.
Article in English | MEDLINE | ID: mdl-29892438

ABSTRACT

A low-cost and eco-friendly superabsorbent composite is prepared through the free-radical graft co-polymerization of wheat bran (WB), acrylic acid (AA) and laterite (LA) in an aqueous solution. Elemental map, scanning electron microscopy and Fourier transform infrared spectra revealed that the LA evenly distributed in the superabsorbent composite and wheat bran-g-poly(acrylic acid)/laterite (WB-g-PAA/LA) formed successfully. Thermogravimetric analysis confirmed that the WB-g-PAA/LA had high thermal stability. Furthermore, the properties of the WB-g-PAA/LA, such as swelling in saline solutions and degradation, are also assessed. The final WB-g-PAA/LA (5 wt%) superabsorbent composite attained an optimum water absorbency of 1425 g g-1 in distilled water and 72 g g-1 in 0.9 wt% NaCl solution. The water absorbency of WB-g-PAA/LA (10 wt%) is even greater than that of the WB-g-PAA. Moreover, the water-retention capacity of WB-g-PAA/LA (5 wt%) is high, and the water-retention process followed a zero-order reaction. The reaction rate constant is 8.2428 × 105 exp(-Ea/RT) and the apparent activation energy (Ea) is 35.11 kJ mol-1. Furthermore, WB-g-PAA/LA (5 wt%) may regulate the release of urea, indicating that the superabsorbent composite could provide a promising application as a urea fertilizer carrier. Additionally, it increased the germination and growth rates of Glycyrrhiza uralensis Fisch, suggesting it could influence the growth of Chinese herbal medicine.

4.
J Colloid Interface Sci ; 512: 55-63, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29054007

ABSTRACT

Selective adsorption of tannic acid (TA) on calcite surfaces and the implications of this process for the separation of fluorite ore were studied by microflotation tests, surface adsorption experiments, zeta potential measurements, UV-vis analysis, and X-ray photoelectron spectroscopy (XPS) analysis. The microflotation tests indicated that TA, when added before sodium oleate (NaOl), could selectively depress calcite from fluorite at pH 7. Surface adsorption experiments revealed that TA hinders the interaction of NaOl with calcite. The zeta potential of calcite became more negative with TA than with NaOl. However, the characteristic features of TA adsorption were not observed on fluorite, suggesting that the dominant adsorption sites are dissimilar on the fluorite and calcite surfaces in the pulp. UV-vis spectroscopy, XPS, and solution chemistry analysis were utilized to obtain a better understanding of the mechanism for selective adsorption of TA as well as the key factors determined by the Ca2+ and Ca(OH)+ components on the mineral surfaces. A possible adsorption mechanism along with an adsorption mode is proposed for the surface interaction between TA and calcite.

SELECTION OF CITATIONS
SEARCH DETAIL
...