Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(15)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37571753

ABSTRACT

In recent years, photoacoustic (PA) imaging has rapidly grown as a non-invasive screening technique for breast cancer detection using three-dimensional (3D) hemispherical arrays due to their large field of view. However, the development of breast imaging systems is hindered by a lack of patients and ground truth samples, as well as under-sampling problems caused by high costs. Most research related to solving these problems in the PA field were based on 2D transducer arrays or simple regular shape phantoms for 3D transducer arrays or images from other modalities. Therefore, we demonstrate an effective method for removing under-sampling artifacts based on deep neural network (DNN) to reconstruct high-quality PA images using numerical digital breast simulations. We constructed 3D digital breast phantoms based on human anatomical structures and physical properties, which were then subjected to 3D Monte-Carlo and K-wave acoustic simulations to mimic acoustic propagation for hemispherical transducer arrays. Finally, we applied a 3D delay-and-sum reconstruction algorithm and a Res-UNet network to achieve higher resolution on sparsely-sampled data. Our results indicate that when using a 757 nm laser with uniform intensity distribution illuminated on a numerical digital breast, the imaging depth can reach 3 cm with 0.25 mm spatial resolution. In addition, the proposed DNN can significantly enhance image quality by up to 78.4%, as measured by MS-SSIM, and reduce background artifacts by up to 19.0%, as measured by PSNR, even at an under-sampling ratio of 10%. The post-processing time for these improvements is only 0.6 s. This paper suggests a new 3D real time DNN method addressing the sparse sampling problem based on numerical digital breast simulations, this approach can also be applied to clinical data and accelerate the development of 3D photoacoustic hemispherical transducer arrays for early breast cancer diagnosis.


Subject(s)
Breast Neoplasms , Photoacoustic Techniques , Humans , Female , Artifacts , Photoacoustic Techniques/methods , Breast , Imaging, Three-Dimensional/methods , Phantoms, Imaging , Algorithms , Image Processing, Computer-Assisted/methods
2.
Biomed Opt Express ; 14(3): 1003-1014, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36950229

ABSTRACT

Assessing the metastatic status of axillary lymph nodes is a common clinical practice in the staging of early breast cancers. Yet sentinel lymph nodes (SLNs) are the regional lymph nodes believed to be the first stop along the lymphatic drainage path of the metastasizing cancer cells. Compared to axillary lymph node dissection, sentinel lymph node biopsy (SLNB) helps reduce morbidity and side effects. Current SLNB methods, however, still have suboptimum properties, such as restrictions due to nuclide accessibility and a relatively low therapeutic efficacy when only a single contrast agent is used. To overcome these limitations, researchers have been motivated to develop a non-radioactive SLN mapping method to replace or supplement radionuclide mapping. We proposed and demonstrated a clinical procedure using a dual-modality photoacoustic (PA)/ultrasound (US) imaging system to locate the SLNs to offer surgical guidance. In our work, the high contrast of PA imaging and its specificity to SLNs were based on the accumulation of carbon nanoparticles (CNPs) in the SLNs. A machine-learning model was also trained and validated to distinguish stained SLNs based on single-wavelength PA images. In the pilot study, we imaged 11 patients in vivo, and the specimens from 13 patients were studied ex vivo. PA/US imaging identified stained SLNs in vivo without a single false positive (23 SLNs), yielding 100% specificity and 52.6% sensitivity based on the current PA imaging system. Our machine-learning model can automatically detect SLNs in real time. In the new procedure, single-wavelength PA/US imaging uses CNPs as the contrast agent. The new system can, with that contrast agent, noninvasively image SLNs with high specificity in real time based on the unique features of the SLNs in the PA images. Ultimately, we aim to use our systems and approach to substitute or supplement nuclide tracers for a non-radioactive, less invasive SLN mapping method in SLNB for the axillary staging of breast cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...